Thermal stress causes the overproduction and toxic accumulation of reactive oxygen species(ROS),which seems to be correlated with coral bleaching and,ultimately,death.The reduction of ROS concentration within the cora...Thermal stress causes the overproduction and toxic accumulation of reactive oxygen species(ROS),which seems to be correlated with coral bleaching and,ultimately,death.The reduction of ROS concentration within the coral holobiont could minimize the effects of thermal stress and support efforts to reduce coral decline globally.In the current study,we explored the physiological responses of Pocillopora damicornis to ROS-scavenging bacteria inoculation as well as the microbiome restructuring that correlates with P.damicornis’s resilience to thermal stress after probiotic inoculation.Inoculation of corals with ROS-scavenging bacteria enhanced coral health and reduced ROS concentration.Furthermore,the enhanced coral thermal resistance promoted by ROS-scavenging bacteria was also correlated with an overall coral microbiome restructuring.In addition,the complex network relationships between bacteria and Symbiodiniaceae in corals after ROS-scavenging bacteria inoculation contributed to corals’resilience to high temperatures.Besides,coral heat tolerance bacterial biomarkers,such as Myxococcota,were enriched in corals with added ROS-scavenging bacteria.Collectively,our findings validate the selected ROS-scavenging bacteria as coral probiotics that could help corals resist thermal stress on a short timescale.Additionally,our data contribute to our understanding of the potential interactions between different members of the coral holobiont and the use of probiotics as tools to aid coral restoration efforts.展开更多
基金Supported by the National Key Research and Development Program of China(No.2022YFC3103602)the National Natural Science Foundation of China(No.41976147)+4 种基金the NSFC-Shandong Joint Fund(No.U 2106208)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)the National Key Research and Development Program of China(No.2018FY100105)the Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2021ZD03)the Science and Technology Planning Project of Guangdong Province,China(No.2020B1212060058)。
文摘Thermal stress causes the overproduction and toxic accumulation of reactive oxygen species(ROS),which seems to be correlated with coral bleaching and,ultimately,death.The reduction of ROS concentration within the coral holobiont could minimize the effects of thermal stress and support efforts to reduce coral decline globally.In the current study,we explored the physiological responses of Pocillopora damicornis to ROS-scavenging bacteria inoculation as well as the microbiome restructuring that correlates with P.damicornis’s resilience to thermal stress after probiotic inoculation.Inoculation of corals with ROS-scavenging bacteria enhanced coral health and reduced ROS concentration.Furthermore,the enhanced coral thermal resistance promoted by ROS-scavenging bacteria was also correlated with an overall coral microbiome restructuring.In addition,the complex network relationships between bacteria and Symbiodiniaceae in corals after ROS-scavenging bacteria inoculation contributed to corals’resilience to high temperatures.Besides,coral heat tolerance bacterial biomarkers,such as Myxococcota,were enriched in corals with added ROS-scavenging bacteria.Collectively,our findings validate the selected ROS-scavenging bacteria as coral probiotics that could help corals resist thermal stress on a short timescale.Additionally,our data contribute to our understanding of the potential interactions between different members of the coral holobiont and the use of probiotics as tools to aid coral restoration efforts.