A duality theorem for Hopf crossed coproduct is proved. This theorem plays a role similar to that appearing in the work of Koppinen (which generalized the corresponding results of group grraded ring).
In 2014, Vargas first defined a super-shuffle product and a cut-box coproduct on permutations. In 2020, Aval, Bergeron and Machacek introduced the super-shuffle product and the cut-box coproduct on labeled simple grap...In 2014, Vargas first defined a super-shuffle product and a cut-box coproduct on permutations. In 2020, Aval, Bergeron and Machacek introduced the super-shuffle product and the cut-box coproduct on labeled simple graphs. In this paper, we generalize the super-shuffle product and the cut-box coproduct from labeled simple graphs to (0,1)-matrices. Then we prove that the vector space spanned by (0,1)-matrices with the super-shuffle product is a graded algebra and with the cut-box coproduct is a graded coalgebra.展开更多
A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct...A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct. In fact, it is a Hopf algebra since it is graded connected. The main conclusions are that the vector space spanned by labeled simple graphs arising from the unshuffle coproduct is a Hopf algebra and that there is a Hopf homomorphism from permutations to label simple graphs.展开更多
Let H be a finite dimensional cosemisimple Hopf algebra, C a left H-comodule coalgebra and let C = C/C(H^*)^+ be the quotient coalgebra and the smash coproduct of C and H. It is shown that if C/C is a eosemisimple...Let H be a finite dimensional cosemisimple Hopf algebra, C a left H-comodule coalgebra and let C = C/C(H^*)^+ be the quotient coalgebra and the smash coproduct of C and H. It is shown that if C/C is a eosemisimple coextension and C is an injective right C-comodule, then gl. dim(the smash coproduct of C and H) = gl. dim(C) = gl. dim(C), where gl. dim(C) denotes the global dimension of coalgebra C.展开更多
In this paper we introduce the notion of (f,ω)-compatible pair (B,H), by which we construct a Hopf algebra in the category HHYD of Yetter-Drinfeld H-modules by twisting the comultiplication of B. We also study th...In this paper we introduce the notion of (f,ω)-compatible pair (B,H), by which we construct a Hopf algebra in the category HHYD of Yetter-Drinfeld H-modules by twisting the comultiplication of B. We also study the property of ω-smash coproduct Hopf algebras Bω H.展开更多
R. J. Blattner and S. Montgomery have proved the duality theorem of Hopf module algebras in Ref. [1]. This theorem contains duality for crossed product of von Neumann algebras. In 1977, R. K. Molnar introduced the con...R. J. Blattner and S. Montgomery have proved the duality theorem of Hopf module algebras in Ref. [1]. This theorem contains duality for crossed product of von Neumann algebras. In 1977, R. K. Molnar introduced the concept of Hopf comodule coalgebras which is a dual notation of Hopf module algebra, and discussed their properties. However, the duality theorem of Hopf comodule coalgebras has not been proved yet. In this note we shall deal with this situation by defining the展开更多
Y. Doi has investigated the H-comodule algebra since 1983. The structure theorem of cleft H-comodule algebra was given by Y. Doi and M. Takeuchi in 1986, i. e. if A is a cleft H-comodule algebra then A≌A<sub>0&...Y. Doi has investigated the H-comodule algebra since 1983. The structure theorem of cleft H-comodule algebra was given by Y. Doi and M. Takeuchi in 1986, i. e. if A is a cleft H-comodule algebra then A≌A<sub>0</sub>#<sub>σ</sub>H as algebra. The dual notion of H-comodule algebra is H-module coalgebra. Y. Doi also studied the H-module coalgebra. However, he did not obtain the structure theorem of cocleft H-module coalgebra. In this note we introduce crossed coproducts which are the dual notion展开更多
A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. ...A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. Firstly, by associativity and the unitary property, we prove that the vector space with the conjunction product is a graded algebra. Then by the definition of free algebra, we prove that the algebra is free. Finally, by the coassociativity and the counitary property, we prove that the vector space with the unshuffle coproduct is a graded coalgebra.展开更多
We develop the Radford's biproduct theorem which plays an important role in giving a negative answer to a conjecture of I Kaplansky. Let B, H be two Hopf algebras with H acting weakly on B and α, β : B → H H be...We develop the Radford's biproduct theorem which plays an important role in giving a negative answer to a conjecture of I Kaplansky. Let B, H be two Hopf algebras with H acting weakly on B and α, β : B → H H be two linear maps verifying suitable conditions. We consider in this paper a twisted Hopf crossed coproduct B ×βα H and derive a necessary and sufficient condition for B # ×βα H with a Hopf smash product structure to be a bialgebra which generalizes in [14, Theorem 1.1] and the well-known Radford biproduct theorem [10, Theorem 1] .展开更多
In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial cross...In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.展开更多
In this paper, the notion of L-R crossed coproduct is introduced as a unified approach for smash coproducts, crossed coproducts and L-R smash coproducts of Hopf algebras.A duality theorem for L-R crossed coproduct is ...In this paper, the notion of L-R crossed coproduct is introduced as a unified approach for smash coproducts, crossed coproducts and L-R smash coproducts of Hopf algebras.A duality theorem for L-R crossed coproduct is proved.展开更多
文摘A duality theorem for Hopf crossed coproduct is proved. This theorem plays a role similar to that appearing in the work of Koppinen (which generalized the corresponding results of group grraded ring).
文摘In 2014, Vargas first defined a super-shuffle product and a cut-box coproduct on permutations. In 2020, Aval, Bergeron and Machacek introduced the super-shuffle product and the cut-box coproduct on labeled simple graphs. In this paper, we generalize the super-shuffle product and the cut-box coproduct from labeled simple graphs to (0,1)-matrices. Then we prove that the vector space spanned by (0,1)-matrices with the super-shuffle product is a graded algebra and with the cut-box coproduct is a graded coalgebra.
文摘A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct. In fact, it is a Hopf algebra since it is graded connected. The main conclusions are that the vector space spanned by labeled simple graphs arising from the unshuffle coproduct is a Hopf algebra and that there is a Hopf homomorphism from permutations to label simple graphs.
基金Supported by the Foundation of Key Research Program (No. 02021029)the NSF (No. 2004kj352) of Anhui Province, China
文摘Let H be a finite dimensional cosemisimple Hopf algebra, C a left H-comodule coalgebra and let C = C/C(H^*)^+ be the quotient coalgebra and the smash coproduct of C and H. It is shown that if C/C is a eosemisimple coextension and C is an injective right C-comodule, then gl. dim(the smash coproduct of C and H) = gl. dim(C) = gl. dim(C), where gl. dim(C) denotes the global dimension of coalgebra C.
基金Supported by the National Natural Science Foundation of China (Grant No. 60873267)
文摘In this paper we introduce the notion of (f,ω)-compatible pair (B,H), by which we construct a Hopf algebra in the category HHYD of Yetter-Drinfeld H-modules by twisting the comultiplication of B. We also study the property of ω-smash coproduct Hopf algebras Bω H.
文摘R. J. Blattner and S. Montgomery have proved the duality theorem of Hopf module algebras in Ref. [1]. This theorem contains duality for crossed product of von Neumann algebras. In 1977, R. K. Molnar introduced the concept of Hopf comodule coalgebras which is a dual notation of Hopf module algebra, and discussed their properties. However, the duality theorem of Hopf comodule coalgebras has not been proved yet. In this note we shall deal with this situation by defining the
文摘Y. Doi has investigated the H-comodule algebra since 1983. The structure theorem of cleft H-comodule algebra was given by Y. Doi and M. Takeuchi in 1986, i. e. if A is a cleft H-comodule algebra then A≌A<sub>0</sub>#<sub>σ</sub>H as algebra. The dual notion of H-comodule algebra is H-module coalgebra. Y. Doi also studied the H-module coalgebra. However, he did not obtain the structure theorem of cocleft H-module coalgebra. In this note we introduce crossed coproducts which are the dual notion
文摘A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. Firstly, by associativity and the unitary property, we prove that the vector space with the conjunction product is a graded algebra. Then by the definition of free algebra, we prove that the algebra is free. Finally, by the coassociativity and the counitary property, we prove that the vector space with the unshuffle coproduct is a graded coalgebra.
基金Supported by the NNSF of China(10871042)Supported by the Foster Foundation of Henan Normal University(2010PL01)Supported by the Research Fund of PhD(1005)
文摘We develop the Radford's biproduct theorem which plays an important role in giving a negative answer to a conjecture of I Kaplansky. Let B, H be two Hopf algebras with H acting weakly on B and α, β : B → H H be two linear maps verifying suitable conditions. We consider in this paper a twisted Hopf crossed coproduct B ×βα H and derive a necessary and sufficient condition for B # ×βα H with a Hopf smash product structure to be a bialgebra which generalizes in [14, Theorem 1.1] and the well-known Radford biproduct theorem [10, Theorem 1] .
基金Acknowledgements This Foundation of China (Grant work was supported by Nos. 11471186, 11261063), the National Natural Science the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ027 and ZR2014AQ024), and the Fund of the Key Disciplines in the General Colleges and Universities of Xin Jiang Uygur Autonomous Region (No. 2012ZDXK03).
文摘In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.
基金Research supported by the National Natural Science Foundation of China(11261063,11471186,11501317)the Natural Foundation of Shandong Province(ZR2018MA012,ZR2016AQ03)
文摘In this paper, the notion of L-R crossed coproduct is introduced as a unified approach for smash coproducts, crossed coproducts and L-R smash coproducts of Hopf algebras.A duality theorem for L-R crossed coproduct is proved.