Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(C...Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(CuBiI4) thin films directly on ITO substrate at room temperature, by utilizing a Bi-Cu alloy layer as precursor. X-ray diffraction and transmission electron microscopy(TEM) results verified the formation of well crystallized CuBiI4 thin films with [222] orientation. The transient photovoltage(TPV) analysis revealed that the CuBiI4 is an n-type semiconductor with a suitable band gap of ~1.81 eV, preferable to photoelectric conversion compared with CH3NH3PbI3. It is very interesting that the subsequent spin-coating process of the classical Spiro-MeOTAD organic solution with TBP and acetonitrile resulted in a dense and smooth CuBiI4:SpiroMeOTAD bulk-heterojunction film. The preliminarily fabricated simple sandwich structures of ITO/CuBiI4:Spiro-MeOTAD/Au hybrid solar cell devices displayed efficient photovoltaic performance with the PCE up to 1.119% of the best sample. The room temperature direct metal surface elemental reaction(DMSER) method may provide a new insight for all-inorganic lead free perovskite-like AaBbXx compounds and high performance photovoltaic devices.展开更多
基金supported by the National Natural Science Foundation of China (21673200, 61504117 and U1604121)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (144200510014)
文摘Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(CuBiI4) thin films directly on ITO substrate at room temperature, by utilizing a Bi-Cu alloy layer as precursor. X-ray diffraction and transmission electron microscopy(TEM) results verified the formation of well crystallized CuBiI4 thin films with [222] orientation. The transient photovoltage(TPV) analysis revealed that the CuBiI4 is an n-type semiconductor with a suitable band gap of ~1.81 eV, preferable to photoelectric conversion compared with CH3NH3PbI3. It is very interesting that the subsequent spin-coating process of the classical Spiro-MeOTAD organic solution with TBP and acetonitrile resulted in a dense and smooth CuBiI4:SpiroMeOTAD bulk-heterojunction film. The preliminarily fabricated simple sandwich structures of ITO/CuBiI4:Spiro-MeOTAD/Au hybrid solar cell devices displayed efficient photovoltaic performance with the PCE up to 1.119% of the best sample. The room temperature direct metal surface elemental reaction(DMSER) method may provide a new insight for all-inorganic lead free perovskite-like AaBbXx compounds and high performance photovoltaic devices.