Using ploughing-extrusion method, a cross-connected finned micro-grooves structure was formed on the surface of copper strips with thickness of 0.4 mm. The structure was fabricated by making ‘V’-grooves in copper st...Using ploughing-extrusion method, a cross-connected finned micro-grooves structure was formed on the surface of copper strips with thickness of 0.4 mm. The structure was fabricated by making ‘V’-grooves in copper strips and perpendicular ‘V’-grooves on the opposite side that intersect the first set of grooves. Micro pores appear at the intersection of these cross-connected grooves, and micro fins appear on the groove fringes. So it can be defined as ‘pore-groove-fin’ structure. The preferable ‘pore-groove-fin’ structure can be obtained under the condition that the tool edge inclination angle (χγ) is 45°, both the major extrusion angle (γo) and the minor extrusion angle (γ 0′ ) are 30°, both the major formation angle (β) and the minor formation angle (β′) are 10°, the ploughing-extrusion depth (fd) is 0.32 mm and the groove pitch is 0.4 mm on surfaces A and B. The formed included angle of groove A is 70°, and the groove depth is 0.3 mm, while the included angle of opposite perpendicular groove B is 20° with the groove depth of 0.35 mm. The obtained fin height is 0.15 mm, the elliptical pore length is 0.2 mm and the width is 0.05 mm. Experiments show that fd has the greatest influence on the formation of micro pores. Bulges appear on the opposite surface B when the ploughing-extrusion depth on surface A (fdA) reaches a critical value. The ploughing-extrusion depth on surface B (fdB) has great influence on the re-growth of fin structure.展开更多
Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel drag...Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.展开更多
The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
基金Projects(50436010, 50605023, 50675070) supported by the National Natural Science Foundation of ChinaProject(04105942) supported by the Natural Science Foundation of Guangdong Province, China
文摘Using ploughing-extrusion method, a cross-connected finned micro-grooves structure was formed on the surface of copper strips with thickness of 0.4 mm. The structure was fabricated by making ‘V’-grooves in copper strips and perpendicular ‘V’-grooves on the opposite side that intersect the first set of grooves. Micro pores appear at the intersection of these cross-connected grooves, and micro fins appear on the groove fringes. So it can be defined as ‘pore-groove-fin’ structure. The preferable ‘pore-groove-fin’ structure can be obtained under the condition that the tool edge inclination angle (χγ) is 45°, both the major extrusion angle (γo) and the minor extrusion angle (γ 0′ ) are 30°, both the major formation angle (β) and the minor formation angle (β′) are 10°, the ploughing-extrusion depth (fd) is 0.32 mm and the groove pitch is 0.4 mm on surfaces A and B. The formed included angle of groove A is 70°, and the groove depth is 0.3 mm, while the included angle of opposite perpendicular groove B is 20° with the groove depth of 0.35 mm. The obtained fin height is 0.15 mm, the elliptical pore length is 0.2 mm and the width is 0.05 mm. Experiments show that fd has the greatest influence on the formation of micro pores. Bulges appear on the opposite surface B when the ploughing-extrusion depth on surface A (fdA) reaches a critical value. The ploughing-extrusion depth on surface B (fdB) has great influence on the re-growth of fin structure.
文摘Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.