How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the...How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.展开更多
随着参试产品尺寸不断增大,试验规模也不断扩大,传统的容栅式位移传感器已经不能适应型号试验发展的需求。室内空间测量定位系统(workspace measuring position system,简称wMPS)是一种基于光平面交会定位原理的大型结构网络式测量系统...随着参试产品尺寸不断增大,试验规模也不断扩大,传统的容栅式位移传感器已经不能适应型号试验发展的需求。室内空间测量定位系统(workspace measuring position system,简称wMPS)是一种基于光平面交会定位原理的大型结构网络式测量系统,在空间三维坐标测量方面有着广阔的应用前景。本文针对航天器结构静力试验中仅关注被测量点相对变形的特点,利用wMPS系统的角度测量数学模型,辅以激光测距,对测量系统进行优化,实现了目标点的轴向位移和径向位移同时测量。该方法具有多点实时测量与跟踪,精度高,试验前无需标定,安装简便等特点。试验表明,wMPS系统测量误差小于0.1mm,完全可以替代传统的容栅式位移传感器。展开更多
In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based o...In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accur展开更多
The traditional method for computing the mean displacement in latitude-longitude coordinates is a spherical meridional-zonal resultant displacement method (MRDM), which regards the displacement as the resultant vect...The traditional method for computing the mean displacement in latitude-longitude coordinates is a spherical meridional-zonal resultant displacement method (MRDM), which regards the displacement as the resultant vector of the meridional and zonal displacement components. However, there are inhomogeneity and singularity in the computation error of the MRDM, especially at high latitudes. Using the NCEP/NCAR long-term monthly mean wind and idealized wind fields, the inhomogeneity in the MRDM was accessed by using a great circle displacement computing method (GCDM) for non-iterative cases. The MRDM and GCDM were also compared for iteration cases by taking the trajectories from a three-time level reference method as the real trajectories. In the horizontal direction, the GCDM assumes that an air particle moves along its locating great circle and that the magnitude of the displacement equals the arc length of the great circle. The inhomogeneity of the MRDM is evaluated in terms of the horizontal dis- tance error from the products of wind speed, lapse time, and angle difference from the GCDM displacement orient. The non-iterative results show that the mean horizontal displacement computed through the MRDM has both compu- tational and analytical errors. The displacement error of the MRDM depends on the wind speed, wind direction, and the departure latitude of the air particle. It increases with the wind speed and the departure latitude. The displacement magnitude error has a four-wave pattern and the displacement direction error has a two-wave feature in the definition range of the wind direction. The iterative result shows that the displacement magnitude error and angle error of the MRDM and GCDM with respect to the reference method increase with the lapse time and have similar distribution patterns. The mean magnitude error and the angle error of the MRDM are nearly twice as large as those of the GCDM.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50905161)the Natural Science Foundation of Zhejiang Province (No. Y1110339)the Fundamental Research Funds for the Central Universities of China (No. 2010QNA4024)
文摘How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.
文摘随着参试产品尺寸不断增大,试验规模也不断扩大,传统的容栅式位移传感器已经不能适应型号试验发展的需求。室内空间测量定位系统(workspace measuring position system,简称wMPS)是一种基于光平面交会定位原理的大型结构网络式测量系统,在空间三维坐标测量方面有着广阔的应用前景。本文针对航天器结构静力试验中仅关注被测量点相对变形的特点,利用wMPS系统的角度测量数学模型,辅以激光测距,对测量系统进行优化,实现了目标点的轴向位移和径向位移同时测量。该方法具有多点实时测量与跟踪,精度高,试验前无需标定,安装简便等特点。试验表明,wMPS系统测量误差小于0.1mm,完全可以替代传统的容栅式位移传感器。
基金National Science and Technology Major Project of China(No.2016ZX04003001)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCZDJC39700)
文摘In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accur
基金Supported by the National Natural Science Foundation of China(41375049,41275099,41475070,and 40905021)China Postdoctoral Science Fund(2011M500894)+2 种基金Jiangsu Province Natural Science Fund(BK20131431)Natural Science Research Project of Jiangsu Province(12KJB170007)China Meteorological Administration Special Public Welfare Research Fund(GYHY201206005)
文摘The traditional method for computing the mean displacement in latitude-longitude coordinates is a spherical meridional-zonal resultant displacement method (MRDM), which regards the displacement as the resultant vector of the meridional and zonal displacement components. However, there are inhomogeneity and singularity in the computation error of the MRDM, especially at high latitudes. Using the NCEP/NCAR long-term monthly mean wind and idealized wind fields, the inhomogeneity in the MRDM was accessed by using a great circle displacement computing method (GCDM) for non-iterative cases. The MRDM and GCDM were also compared for iteration cases by taking the trajectories from a three-time level reference method as the real trajectories. In the horizontal direction, the GCDM assumes that an air particle moves along its locating great circle and that the magnitude of the displacement equals the arc length of the great circle. The inhomogeneity of the MRDM is evaluated in terms of the horizontal dis- tance error from the products of wind speed, lapse time, and angle difference from the GCDM displacement orient. The non-iterative results show that the mean horizontal displacement computed through the MRDM has both compu- tational and analytical errors. The displacement error of the MRDM depends on the wind speed, wind direction, and the departure latitude of the air particle. It increases with the wind speed and the departure latitude. The displacement magnitude error has a four-wave pattern and the displacement direction error has a two-wave feature in the definition range of the wind direction. The iterative result shows that the displacement magnitude error and angle error of the MRDM and GCDM with respect to the reference method increase with the lapse time and have similar distribution patterns. The mean magnitude error and the angle error of the MRDM are nearly twice as large as those of the GCDM.