Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling ...Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.展开更多
The ferrite decarburization behavior of 60Si2MnA spring steel wires for automotive suspensions, including the forming condition and the influence of heating time and cooling rate after hot rolling, was investigated co...The ferrite decarburization behavior of 60Si2MnA spring steel wires for automotive suspensions, including the forming condition and the influence of heating time and cooling rate after hot rolling, was investigated comprehensively. Also, a control strategy during the reheating process and cooling process after rolling was put forward to protect against ferrite decarburization. The results show that ferrite decarburization, which has the strong temperature dependence due to phase transformation, is produced between 675 and 875°C. The maximum depth is found at 750°C. Heating time and cooling rate after rolling have an important influence on decarburization. Reasonable preheating temperature in the billet reheating process and austenitizing temperature in the heat-treatment process are suggested to protect against ferrite decarburization.展开更多
Microstructure evolution and corrosion properties of Mg-2Dy-0.5Zn (at.%) alloy during cooling after solution treatment were investigated. The microstructure of alloy in the solid solution state (530 oC, 12 h) was ...Microstructure evolution and corrosion properties of Mg-2Dy-0.5Zn (at.%) alloy during cooling after solution treatment were investigated. The microstructure of alloy in the solid solution state (530 oC, 12 h) was composed ofα-Mg and small amounts of (Mg, Zn)xDy phases. During cooling at a cooling rate of 2 oC/min, the 14H-type LPSO phase gradually precipitated in the grain inte-rior and its volume fraction increased with increasing cooling time. The alloy cooled for 20 min exhibited the highest hardness value. In addition, electrochemical and immersion test results indicated that the alloy cooled for 5 min exhibited small corrosion current and low corrosion rate. The good corrosion resistance of alloy was mainly attributed to the continuous distribution of LPSO phase along the grain boundary.展开更多
基金the financial support of Spanish Ministry of Economy and Competitiveness through the project ref.MAT2011-29039-C02-02
文摘Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.
文摘The ferrite decarburization behavior of 60Si2MnA spring steel wires for automotive suspensions, including the forming condition and the influence of heating time and cooling rate after hot rolling, was investigated comprehensively. Also, a control strategy during the reheating process and cooling process after rolling was put forward to protect against ferrite decarburization. The results show that ferrite decarburization, which has the strong temperature dependence due to phase transformation, is produced between 675 and 875°C. The maximum depth is found at 750°C. Heating time and cooling rate after rolling have an important influence on decarburization. Reasonable preheating temperature in the billet reheating process and austenitizing temperature in the heat-treatment process are suggested to protect against ferrite decarburization.
基金Project supported by the National Natural Science Foundation of China(51301082,51464031)Natural Science Foundation of Shanxi Province(2015011038)
文摘Microstructure evolution and corrosion properties of Mg-2Dy-0.5Zn (at.%) alloy during cooling after solution treatment were investigated. The microstructure of alloy in the solid solution state (530 oC, 12 h) was composed ofα-Mg and small amounts of (Mg, Zn)xDy phases. During cooling at a cooling rate of 2 oC/min, the 14H-type LPSO phase gradually precipitated in the grain inte-rior and its volume fraction increased with increasing cooling time. The alloy cooled for 20 min exhibited the highest hardness value. In addition, electrochemical and immersion test results indicated that the alloy cooled for 5 min exhibited small corrosion current and low corrosion rate. The good corrosion resistance of alloy was mainly attributed to the continuous distribution of LPSO phase along the grain boundary.