期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于紧凑型Vision transformer的细粒度视觉分类 被引量:1
1
作者 徐昊 郭黎 李润泽 《控制与决策》 EI CSCD 北大核心 2024年第3期893-900,共8页
Vision transformer(ViT)已广泛应用于细粒度视觉分类中,针对其中存在的大数据量需求和高计算复杂度的问题,提出一种紧凑型Vi T模型.首先,使用多层卷积块生成模型输入,保留更多底层信息和归纳偏置,减少对数据量的依赖;然后,使用序列池... Vision transformer(ViT)已广泛应用于细粒度视觉分类中,针对其中存在的大数据量需求和高计算复杂度的问题,提出一种紧凑型Vi T模型.首先,使用多层卷积块生成模型输入,保留更多底层信息和归纳偏置,减少对数据量的依赖;然后,使用序列池化技术取消分类令牌的使用,减少计算复杂度;最后,使用部位选择模块和混合损失函数,进一步提升模型在细粒度视觉分类中的表现.所提出算法在公共数据集CUB-200-2011、Butterfly200、Stanford Dogs、Stanford Cars和NABirds中均进行了实验验证,在只使用少量的数据和计算资源条件下,分别获得了88.9%、87.4%、89.0%、93.4%和88.0%的准确率,训练时间平均比常用的Vi T-B_16模型下降了73.8%,同时比TransFG模型下降了93.9%,并且训练过程中的参数量只有这两种模型的1/4左右.实验结果充分表明,所提出的模型较之其他主流的方法在数据量需求和计算复杂度方面具有明显的优越性,可广泛应用于工业过程控制、设备微小故障检测与诊断中. 展开更多
关键词 紧凑型 Vision transformer 细粒度视觉分类 卷积块 归纳偏置 序列池化 混合损失
原文传递
Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls
2
作者 Xiaorui Zhang Qijian Xie +2 位作者 Wei Sun Yongjun Ren Mithun Mukherjee 《Computers, Materials & Continua》 SCIE EI 2023年第10期47-61,共15页
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d... Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively. 展开更多
关键词 Fall detection lightweight OpenPose spatial-temporal graph convolutional network dense blocks
下载PDF
An Optimized Convolutional Neural Network with Combination Blocks for Chinese Sign Language Identification 被引量:1
3
作者 Yalan Gao Yanqiong Zhang Xianwei Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期95-117,共23页
(Aim)Chinese sign language is an essential tool for hearing-impaired to live,learn and communicate in deaf communities.Moreover,Chinese sign language plays a significant role in speech therapy and rehabilitation.Chine... (Aim)Chinese sign language is an essential tool for hearing-impaired to live,learn and communicate in deaf communities.Moreover,Chinese sign language plays a significant role in speech therapy and rehabilitation.Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society.Similar to the research of many biomedical image processing(such as automatic chest radiograph processing,diagnosis of chest radiological images,etc.),with the rapid development of artificial intelligence,especially deep learning technologies and algorithms,sign language image recognition ushered in the spring.This study aims to propose a novel sign language image recognition method based on an optimized convolutional neural network.(Method)Three different combinations of blocks:Conv-BN-ReLU-Pooling,Conv-BN-ReLU,Conv-BN-ReLU-BN were employed,including some advanced technologies such as batch normalization,dropout,and Leaky ReLU.We proposed an optimized convolutional neural network to identify 1320 sign language images,which was called as CNN-CB method.Totally ten runs were implemented with the hold-out randomly set for each run.(Results)The results indicate that our CNN-CB method gained an overall accuracy of 94.88±0.99%.(Conclusion)Our CNN-CB method is superior to thirteen state-of-the-art methods:eight traditional machine learning approaches and five modern convolutional neural network approaches. 展开更多
关键词 convolutional neural network combination blocks Chinese sign language batch normalization DROPOUT Leaky ReLU M-fold cross-validation
下载PDF
基于LSTM-Attention网络的短期风电功率预测 被引量:14
4
作者 钱勇生 邵洁 +3 位作者 季欣欣 李晓瑞 莫晨 程其玉 《电机与控制应用》 2019年第9期95-100,共6页
提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网... 提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTM-Attention模型具有更高的预测精度,证明了该方法的有效性。 展开更多
关键词 风电功率预测 LSTM 卷积神经网络 压缩和奖惩网络模块 注意力机制
下载PDF
密集卷积残差网络的遥感图像融合 被引量:6
5
作者 陈毛毛 郭擎 +1 位作者 刘明亮 李安 《遥感学报》 EI CSCD 北大核心 2021年第6期1270-1283,共14页
针对传统的遥感图像融合方法通常会引起光谱失真的问题和大多数基于深度学习的融合方法忽略充分利用每个卷积层信息的不足,本文结合密集连接卷积网络和残差网络的特性,提出了一个新的融合网络。该网络通过建立多个密集卷积块来充分利用... 针对传统的遥感图像融合方法通常会引起光谱失真的问题和大多数基于深度学习的融合方法忽略充分利用每个卷积层信息的不足,本文结合密集连接卷积网络和残差网络的特性,提出了一个新的融合网络。该网络通过建立多个密集卷积块来充分利用卷积层的分级特征,同时块与块之间通过过渡层加快信息流动,从而最大程度地对特征进行极致利用并提取到丰富的特征。该网络应用残差学习拟合深层特征与浅层特征之间的残差,加快网络的收敛速度。实验中利用Gao Fen-1(GF-1)和World View-2/3(WV-2/3)的多光谱图像MS(Multispectral Image)和全色图像PAN(Panchromatic Image)(MS与PAN的空间分辨率之比为4)评估本文提出方法的有效性。从视觉效果和定量评估结果两个方面来看,本文方法得到的融合结果要优于所对比的传统方法和深度学习方法,并且该网络具有鲁棒性,能够泛化到不需要预训练的其他卫星图像。本文方法通过特征的重复利用实现了光谱信息的高保真并提高了空间细节分辨能力,有利于遥感图像的应用研究。 展开更多
关键词 遥感图像融合 深度学习 密集连接卷积网络 密集卷积块 残差学习
原文传递
基于多特征卷积神经网络的手写公式符号识别 被引量:7
6
作者 方定邦 冯桂 +3 位作者 曹海燕 杨恒杰 韩雪 易银城 《激光与光电子学进展》 CSCD 北大核心 2019年第7期256-263,共8页
提出了基于多特征稠密卷积神经网络的模型框架(DenseNet-SE)。与传统方法相比,DenseNet-SE采用数据驱动的方法,无需手工提取特征。该框架包含了稠密残差块的结构,能够获取深度特征。通过跳跃连接的方式,从浅层获取细粒度特征来辅助深度... 提出了基于多特征稠密卷积神经网络的模型框架(DenseNet-SE)。与传统方法相比,DenseNet-SE采用数据驱动的方法,无需手工提取特征。该框架包含了稠密残差块的结构,能够获取深度特征。通过跳跃连接的方式,从浅层获取细粒度特征来辅助深度特征。同时,融合特征有助于网络结构获取更多全局信息,更好地表示公式符号的类别。利用在线手写数学表达式识别的竞赛组织(CROHME)提供的标准数学公式符号库来验证所提算法,结果表明,CROHME2014和CROHME2016的识别率分别达到93.38%和92.93%,高于目前已有算法的识别率。 展开更多
关键词 光计算 稠密卷积神经网络 手写公式符号 稠密残差块 深度特征 细粒度特征
原文传递
一种基于信息保留网络的图像去噪算法 被引量:4
7
作者 陈清江 石小涵 柴昱洲 《应用光学》 CAS CSCD 北大核心 2019年第3期440-446,共7页
由于成像设备等各种因素影响,图像在成像或传感过程中会受到噪声干扰。图像去噪旨在减少或消除噪声对图像的影响,这一过程往往会导致高频信息的丢失。为了在去除图像噪声的同时保护图像的边缘信息与纹理细节,文章提出了一种计算复杂度... 由于成像设备等各种因素影响,图像在成像或传感过程中会受到噪声干扰。图像去噪旨在减少或消除噪声对图像的影响,这一过程往往会导致高频信息的丢失。为了在去除图像噪声的同时保护图像的边缘信息与纹理细节,文章提出了一种计算复杂度相对较低的含有信息保留模块的卷积神经网络,直接对含噪声图像进行降噪。信息保留模块通过残差学习提取局部长路径和局部短路径的混合特征信息。该文采用峰值信噪比(PSNR/dB)和结构相似性(SSIM)两项评价指标对实验结果进行量化,这两项指标值越大,说明去噪效果越好。实验结果表明,在峰值信噪比和结构相似性2项评价指标的均值可达到30.36 dB和0.828 0,相比其他对比算法,2项评价指标分别平均提升了2.15 dB和0.072 9。该算法对不同种类、不同水平的噪声都具有良好的去噪效果,且速度优于所对比的一般算法,对基于卷积神经网络的去噪工作的进一步发展有一定的作用。 展开更多
关键词 图像去噪 卷积神经网络 信息保留模块 提升单元
下载PDF
基于残差SDE-Net的深度神经网络不确定性估计
8
作者 王永光 姚淑珍 谭火彬 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1991-2000,共10页
神经随机微分方程模型(SDE-Net)可以从动力学系统的角度来量化深度神经网络(DNNs)的认知不确定性。但SDE-Net面临2个问题,一是在处理大规模数据集时,随着网络层次的增加会导致性能退化;二是SDE-Net在处理具有噪声或高丢失率的分布内数... 神经随机微分方程模型(SDE-Net)可以从动力学系统的角度来量化深度神经网络(DNNs)的认知不确定性。但SDE-Net面临2个问题,一是在处理大规模数据集时,随着网络层次的增加会导致性能退化;二是SDE-Net在处理具有噪声或高丢失率的分布内数据所引起的偶然不确定性问题时性能较差。为此设计了一种残差SDE-Net(ResSDE-Net),该模型采用了改进的残差网络(ResNets)中的残差块,并应用于SDE-Net以获得一致稳定性和更高的性能;针对具有噪声或高丢失率的分布内数据,引入具有平移等变性的卷积条件神经过程(ConvCNPs)进行数据修复,从而提高ResSDE-Net处理此类数据的性能。实验结果表明:ResSDE-Net在处理分布内和分布外的数据时获得了一致稳定的性能,并在丢失了70%像素的MNIST、CIFAR10及实拍的SVHN数据集上,仍然分别获得89.89%、65.22%和93.02%的平均准确率。 展开更多
关键词 神经随机微分方程 卷积条件神经过程 不确定性估计 残差块 深度神经网络
下载PDF
基于局部路径特征信息神经网络的图像去噪 被引量:3
9
作者 王慧 冯金顺 程正兴 《液晶与显示》 CAS CSCD 北大核心 2020年第1期70-79,共10页
图像去噪旨在减少或消除噪声对图像的影响,这一过程往往会有高频细节信息的丢失。为了在去除图像噪声的同时保护图像的边缘信息与纹理细节,本文提出了一种能够连接图像局部路径信息的神经网络,该网络训练完成后可以直接对含噪声图像进... 图像去噪旨在减少或消除噪声对图像的影响,这一过程往往会有高频细节信息的丢失。为了在去除图像噪声的同时保护图像的边缘信息与纹理细节,本文提出了一种能够连接图像局部路径信息的神经网络,该网络训练完成后可以直接对含噪声图像进行降噪,不需要对图像进行预处理。本文提出的神经网络包括3个部分特征提取层、信息连接模块、信息重建层。信息连接模块是该网络的关键部分,通过残差学习连接局部长路径和局部短路径的特征信息。实验结果表明,经本文处理后的图像在有参考的图像质量评价指标PSNR和SSIM上均有明显提升,PSNR最高可以达到34.87 dB,SSIM可以达到0.87以上;在无参考的图像质量评价指标BRISQUE和NIQE上均有明显下降。本文算法对不同水平、不同种类的算法都有相对较好的效果,且性能优于一般算法,在去噪工作中有一定的实用价值。 展开更多
关键词 图像去噪 卷积神经网络 信息连接模块 增强单元
下载PDF
基于可变形非局部三维卷积网络的视频超分辨率重建算法 被引量:1
10
作者 蔡非凡 万旺根 《工业控制计算机》 2022年第3期54-56,共3页
视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局... 视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局部结构(Non-Local)同时增强了输入帧的时空信息中所需要的精细细节。此外,残差可变形三维卷积(R3D)获得了卓越的时空建模能力和运动感知建模的灵活性。此外,残差密集连接网络(RRDB)再进行重建处理,以充分利用输入到重建模块的层级特征。在基准数据集上进行的定量和定性实验表明,与现有的较为先进的VSR方法相比,所提方法在PSNR指标上提高了1.19db,在SSIM指标上提高了约5.95%。消融性实验确认提出的三个模块均带来了一定的性能增益,实验结果验证了所提算法在视频超分辨率时空信息重建领域的有效性。 展开更多
关键词 视频超分辨率 深度学习 可变形三维卷积网络 非局部神经网络 残差密集连接网络
下载PDF
改进的V-C-Net卷积神经网络脑肿瘤图像多层次分割实验 被引量:1
11
作者 莫修源 吴丽丽 陆志翔 《软件工程》 2022年第12期37-43,共7页
针对脑肿瘤分割研究中对肿瘤边缘分割不够精确,分割目标较小而背景因素过大的问题,提出改进的V-C-Net卷积神经网络模型。在原始的V-Net模型基础上,加入CBAM混合注意力机制,使模型更关注脑肿瘤图像的病变部分,结合三种损失函数优点并与... 针对脑肿瘤分割研究中对肿瘤边缘分割不够精确,分割目标较小而背景因素过大的问题,提出改进的V-C-Net卷积神经网络模型。在原始的V-Net模型基础上,加入CBAM混合注意力机制,使模型更关注脑肿瘤图像的病变部分,结合三种损失函数优点并与训练次数间建立联系提出改进的联合损失函数,并对核磁共振脑肿瘤3D多模态医学图像做重叠分块预处理,利用改进的模型对BraTs数据集进行分割实验,并与FCN全卷积网络、3D-Unet神经网络、传统V-Net神经网络模型的分割效果做对比分析。模型在测试集上的Dice系数(DSC)、交并比(IoU)、敏感度(Sensitivity)、精确率(Precision)及豪斯多夫距离(HD)五个性能指标平均值分别为90.78%、89.68%、91.70%、96.48%、0.451,实验结果表明改进的V-C-Net模型对脑肿瘤病变部分分割性能更优。 展开更多
关键词 脑肿瘤分割 V-C-Net卷积神经网络 CBAM混合注意力机制 联合损失函数 重叠分块预处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部