期刊文献+
共找到2,416篇文章
< 1 2 121 >
每页显示 20 50 100
卷积神经网络的发展及其在计算机视觉领域中的应用综述 被引量:136
1
作者 陈超 齐峰 《计算机科学》 CSCD 北大核心 2019年第3期63-73,共11页
近年来,深度学习在计算机视觉、语音识别、自然语言处理和医疗影像处理等领域取得了一系列显著的研究成果。在不同类型的深度神经网络中,卷积神经网络得到了最广泛的研究,这不仅体现在学术研究领域的繁荣,更体现在对相关产业产生了巨大... 近年来,深度学习在计算机视觉、语音识别、自然语言处理和医疗影像处理等领域取得了一系列显著的研究成果。在不同类型的深度神经网络中,卷积神经网络得到了最广泛的研究,这不仅体现在学术研究领域的繁荣,更体现在对相关产业产生了巨大的现实影响和商业价值上。随着标注样本数据集的快速增长和图形处理器(GPU)性能的大幅度提高,卷积神经网络的相关研究得到了迅速的发展,并在计算机视觉领域的各种任务中成效卓然。首先,回顾了卷积神经网络的发展历史;其次,介绍了卷积神经网络的基本结构及各组件的作用;然后,详细描述了卷积神经网络在卷积层、池化层和激活函数等方面的改进研究,总结了自1998年以来比较有代表性的神经网络架构:AlexNet,ZF-Net,VGGNet,GoogLeNet,ResNet,DenseNet,DPN和SENet;在计算机视觉领域,重点介绍了卷积神经网络在图像分类/定位、目标检测、目标分割、目标跟踪、行为识别和图像超分辨率重构等应用方面的最新研究进展;最后,对卷积神经网络研究中亟待解决的问题与挑战进行了总结。 展开更多
关键词 人工智能 深度学习 卷积神经网络 计算机视觉
下载PDF
用于微博情感分析的一种情感语义增强的深度学习模型 被引量:128
2
作者 何炎祥 孙松涛 +1 位作者 牛菲菲 李飞 《计算机学报》 EI CSCD 北大核心 2017年第4期773-790,共18页
基于神经语言模型的词向量表示技术能够从大规模的未标注文本数据集中自动学习词语的有效特征表示,已经在许多自然语言处理任务及研究中取得重要进展.微博中的表情符号是微博情感分析最重要的特征之一,已有大量的研究工作在探索有效地... 基于神经语言模型的词向量表示技术能够从大规模的未标注文本数据集中自动学习词语的有效特征表示,已经在许多自然语言处理任务及研究中取得重要进展.微博中的表情符号是微博情感分析最重要的特征之一,已有大量的研究工作在探索有效地利用表情符号来提升微博情感分类效果.借助词向量表示技术,为常用表情符号构建情感空间的特征表示矩阵R^E;基于向量的语义合成计算原理,通过矩阵R^E与词向量的乘积运算完成词义到情感空间的映射;接着输入到一个MCNN(Multi-channel Convolution Neural Network)模型,学习一个微博的情感分类器.整个模型称为EMCNN(Emotion-semantics enhanced MCNN),将基于表情符号的情感空间映射与深度学习模型MCNN结合,有效增强了MCNN捕捉情感语义的能力.EMCNN模型在NLPCC微博情感评测数据集上的多个情感分类实验中取得最佳分类性能,并在所有性能指标上超过目前已知文献中的最好分类效果.在取得以上分类性能提升的同时,EMCNN相对MCNN的训练耗时在主客观分类时减少了36.15%,在情感7分类时减少了33.82%. 展开更多
关键词 微博 情感分析 深度学习 卷积神经网络 自然语言处理 社交网络
下载PDF
基于Dopout与ADAM优化器的改进CNN算法 被引量:109
3
作者 杨观赐 杨静 +1 位作者 李少波 胡建军 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第7期122-127,共6页
在分析当前卷积神经网络模型特征提取过程中存在问题的基础上,提出了基于Dropout与ADAM优化器的改进卷积神经网络算法(MCNN-DA).设计了二次卷积神经网络结构,通过引入基于Re LU的激活函数以避免梯度消失问题,提高收敛速度;通过在全连... 在分析当前卷积神经网络模型特征提取过程中存在问题的基础上,提出了基于Dropout与ADAM优化器的改进卷积神经网络算法(MCNN-DA).设计了二次卷积神经网络结构,通过引入基于Re LU的激活函数以避免梯度消失问题,提高收敛速度;通过在全连接层和输出层之间加入Dropout层解决过拟合问题,并设计了ADAM优化器的最小化交叉熵.以MNIST和HCL2000数据集为测试数据,测试分析了ADAM优化器的不同学习率对算法性能的影响,得出当学习率处于0.04~0.08时,算法具有较好的识别性能.与三种算法的实验比较结果表明:本文算法的平均识别率最高可达99.21%;对于HCL2000测试集,本文算法的平均识别率比基于支持向量机优化的极速学习机算法提高了3.98%. 展开更多
关键词 卷积神经网络 激活函数 梯度消失 ADAM优化器 梯度饱和问题
原文传递
基于改进VGG卷积神经网络的棉花病害识别模型 被引量:102
4
作者 张建华 孔繁涛 +3 位作者 吴建寨 翟治芬 韩书庆 曹姗姗 《中国农业大学学报》 CAS CSCD 北大核心 2018年第11期161-171,共11页
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型... 为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。 展开更多
关键词 棉花 卷积神经网络 VGG网络 病害 图像识别
原文传递
采用改进生成式对抗网络的电力系统量测缺失数据重建方法 被引量:84
5
作者 王守相 陈海文 +1 位作者 潘志新 王建明 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期56-64,共9页
量测数据的采集、传输、转换各个环节都有可能发生故障或受到干扰,导致数据出现缺失。传统重建方法仅考虑单一数据分布规律,忽略了电力系统中量测点、采集变量之间的相关性及历史的负荷变化规律,重建精度低。该文提出了基于改进生成式... 量测数据的采集、传输、转换各个环节都有可能发生故障或受到干扰,导致数据出现缺失。传统重建方法仅考虑单一数据分布规律,忽略了电力系统中量测点、采集变量之间的相关性及历史的负荷变化规律,重建精度低。该文提出了基于改进生成式对抗网络(wassersteingenerative adversarial networks,WGAN)的量测缺失值重建方法,并设计了适用于该问题的WGAN网络结构。通过WGAN的无监督训练,神经网络将自动学习到量测之间相关性、负荷波动规律等难以显式建模的复杂时空关系。利用真实性约束及上下文相似性约束优化隐变量,使得训练后的生成器将能够生成高精度的重建数据。文中方法完全依靠数据驱动,不涉及显式建模步骤,在大量量测出现缺失的情况下仍具有较高的重建精度。算例中分析了量测缺失数量与重建误差之间的关系,证明了文中方法性能稳定。对于算例中长期缺失的特定量测,文中方法所重建的数据能够体现量测真实的时序特性。 展开更多
关键词 电力系统量测 生成式对抗网络 缺失数据重建 卷积神经网络 时序特性
下载PDF
基于卷积神经网络的正则化方法 被引量:75
6
作者 吕国豪 罗四维 +1 位作者 黄雅平 蒋欣兰 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1891-1900,共10页
正则化方法是逆问题求解中经常使用的方法.准确的正则化模型在逆问题求解中具有重要作用.对于不同类型的图像和图像的不同区域,正则化方法的能量约束形式应当不同,但传统的L1,L2正则化方法均基于单一先验假设,对所有图像使用同一能量约... 正则化方法是逆问题求解中经常使用的方法.准确的正则化模型在逆问题求解中具有重要作用.对于不同类型的图像和图像的不同区域,正则化方法的能量约束形式应当不同,但传统的L1,L2正则化方法均基于单一先验假设,对所有图像使用同一能量约束形式.针对传统正则化模型中单一先验假设的缺陷,提出了基于卷积神经网络的正则化方法,并将其应用于图像复原问题.该方法的创新之处在于将图像复原看作一个分类问题,利用卷积神经网络对图像子块的特征进行提取和分类,然后针对不同特征区域采用不同的先验形式进行正则化约束,使正则化方法不再局限于单一的先验假设.实验表明基于卷积神经网络的正则化方法的图像复原结果优于传统的单一先验假设模型. 展开更多
关键词 L1范数约束 L2范数约束 正则化方法 卷积神经网络 图像复原
下载PDF
基于卷积神经网络的锂离子电池SOH估算 被引量:75
7
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《电工技术学报》 EI CSCD 北大核心 2020年第19期4106-4119,共14页
锂离子电池健康状态(SOH)描述了电池当前老化程度,其估算难点在于缺乏明确统一的定义、无法直接测量以及难以确定数量合适、相关性高的估算输入量。为了克服上述问题,该文从容量的角度定义SOH,并将锂离子电池恒流-恒压充电过程中的电压... 锂离子电池健康状态(SOH)描述了电池当前老化程度,其估算难点在于缺乏明确统一的定义、无法直接测量以及难以确定数量合适、相关性高的估算输入量。为了克服上述问题,该文从容量的角度定义SOH,并将锂离子电池恒流-恒压充电过程中的电压、电流、温度曲线作为输入,提出采用一维深度卷积神经网络(CNN)实现锂离子电池容量估算以获取SOH。在NASA锂离子电池随机使用数据集和牛津电池老化数据集上进行的实验结果表明,该方法能够实现准确的SOH估算,且具备网络参数少、占用内存小的优势。另外,通过实验讨论了网络输入、模型结构、数据增强对所提出的SOH估算方法的影响。 展开更多
关键词 锂离子电池 健康状态 卷积神经网络 深度学习
下载PDF
空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草 被引量:71
8
作者 孙俊 何小飞 +3 位作者 谭文军 武小红 沈继锋 陆虎 《农业工程学报》 EI CAS CSCD 北大核心 2018年第11期159-165,共7页
针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型。通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连... 针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型。通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连接层来减少模型的参数。通过设置不同膨胀系数的初始卷积层卷积核与全局池化层类型,以及设置不同Batch Size,得到8种改进模型,用于训练识别共12种农作物幼苗与杂草,并从建立的模型中选出最优模型。改进后的最优模型与传统Alex Net模型相比,仅经过4次训练迭代,就能达到90%以上的识别准确率,平均测试识别准确率达到98.80%,分类成功指数达到96.84%,模型内存需求减少为4.20 MB。实际田间预测野芥与雀麦幼苗的准确率都能达到75%左右,说明该文最优模型对正常情况下的幼苗识别性能较好,但对复杂黑暗背景下的甜菜幼苗准确率为60%,对恶劣背景下的识别性能还有待提升。由于模型使用了更宽的网络结构,增加了特征图的多尺度融合,保持对输入空间变换的不变性,故对正常情况下不同作物幼苗与杂草的识别能力较强。该文改进模型能达到较高的平均识别准确率及分类成功率,可为后续深入探索复杂田间背景下的杂草识别以及杂草与幼苗识别装置的研制打下基础。 展开更多
关键词 图像识别 农作物 幼苗 杂草 空洞卷积 全局池化 多尺度特征融合 卷积神经网络
下载PDF
基于深度学习的镜下矿石矿物的智能识别实验研究 被引量:67
9
作者 徐述腾 周永章 《岩石学报》 SCIE EI CAS CSCD 北大核心 2018年第11期3244-3252,共9页
矿石矿物鉴定的智能化是智能地质学和智能矿床学的基础技术之一。计算机视觉技术和深度学习理论使矿石矿物鉴定的智能化成为可能。本研究基于深度学习系统Tensor Flow,以吉林夹皮沟金矿和河北石湖金矿的黄铁矿、黄铜矿、方铅矿、闪锌矿... 矿石矿物鉴定的智能化是智能地质学和智能矿床学的基础技术之一。计算机视觉技术和深度学习理论使矿石矿物鉴定的智能化成为可能。本研究基于深度学习系统Tensor Flow,以吉林夹皮沟金矿和河北石湖金矿的黄铁矿、黄铜矿、方铅矿、闪锌矿等硫化物矿物为例,设计有针对性的Unet卷积神经网络模型,有效自动提取矿相显微镜下矿石矿物的深层特征信息,实现镜下矿石矿物智能识别与分类。实验显示,模型在训练过程中,随着训练次数的增加,模型精度在不断增大,损失函数不断减小;经过3000个批处理之后,模型精度和损失函数基本趋于稳定。训练出的模型对测试集中的显微镜镜下矿石矿物照片的识别成功率均高于90%,说明实验所建立的模型,具有很好的图像特征提取能力,能完成镜下矿石矿物智能识别的任务。 展开更多
关键词 卷积神经网络算法 深度学习 矿物自动识别 地质大数据 智能地质学 机器学习
下载PDF
基于卷积神经网络的小样本图像识别方法 被引量:65
10
作者 段萌 王功鹏 牛常勇 《计算机工程与设计》 北大核心 2018年第1期224-229,共6页
为提高仅包含少量训练样本的图像识别准确率,利用卷积神经网络作为图像的特征提取器,提出一种基于卷积神经网络的小样本图像识别方法。在原始小数据集中引入数据增强变换,扩充数据样本的范围;在此基础上将大规模数据集上的源预训练模型... 为提高仅包含少量训练样本的图像识别准确率,利用卷积神经网络作为图像的特征提取器,提出一种基于卷积神经网络的小样本图像识别方法。在原始小数据集中引入数据增强变换,扩充数据样本的范围;在此基础上将大规模数据集上的源预训练模型在目标小数据集上进行迁移训练,提取除最后全连接层之外的模型权重和图像特征;结合源预训练模型提取的特征,采用层冻结方法,微调目标小规模数据集上的卷积模型,得到最终分类识别结果。实验结果表明,该方法在小规模图像数据集的识别问题中具有较高的准确率和鲁棒性。 展开更多
关键词 卷积神经网络 模型预训练 模型微调 迁移学习 小样本
下载PDF
基于优化卷积神经网络的电缆早期故障分类识别 被引量:60
11
作者 汪颖 孙建风 +2 位作者 肖先勇 卢宏 杨晓梅 《电力系统保护与控制》 EI CSCD 北大核心 2020年第7期10-18,共9页
准确识别电缆早期故障是及时消除故障隐患的必要前提。提出基于卷积神经网络的电缆早期故障分类识别的方法,可从含恒定阻抗故障、励磁涌流、电容投切扰动的过电流信号中准确识别电缆早期故障。通过小波变换提取过电流信号特征,构建卷积... 准确识别电缆早期故障是及时消除故障隐患的必要前提。提出基于卷积神经网络的电缆早期故障分类识别的方法,可从含恒定阻抗故障、励磁涌流、电容投切扰动的过电流信号中准确识别电缆早期故障。通过小波变换提取过电流信号特征,构建卷积神经网络,进行训练调整网络参数形成输入特征与类别编码之间的映射关系。为解决训练过拟合和学习效率的问题,通过修正损失函数和采用自适应学习率的方法优化卷积神经网络。仿真结果表明,所提方法能对过电流信号进行有效分类,准确识别电缆早期故障,具有较高的工程应用价值。 展开更多
关键词 电缆早期故障 卷积神经网络 深度学习 分类识别 修正损失函数
下载PDF
基于卷积神经网络的非侵入负荷辨识算法 被引量:56
12
作者 张玉天 邓春宇 +2 位作者 刘沅昆 陈盛 史梦洁 《电网技术》 EI CSCD 北大核心 2020年第6期2038-2044,共7页
非侵入式负荷监测因其实施成本低且对用户干扰小,具有广泛的应用前景。负荷辨识方法是非侵入式复合监测的主要技术难点之一。研究了非侵入式负荷监测模式下基于卷积神经网络的非侵入负荷辨识算法。首先利用局部平均分解算法对采集到的... 非侵入式负荷监测因其实施成本低且对用户干扰小,具有广泛的应用前景。负荷辨识方法是非侵入式复合监测的主要技术难点之一。研究了非侵入式负荷监测模式下基于卷积神经网络的非侵入负荷辨识算法。首先利用局部平均分解算法对采集到的混合信号进行负荷分离,并通过智能学习的方法提取独立负荷特征,建立了能够处理二维图像数据的卷积神经网络模型,将大量典型家电的运行电流数据转换成图片的形式,对卷积神经网络模型进行训练,并基于该模型进行负荷特征提取,从而达到辨识的目的。经过实际采集的用电数据进行仿真实验,结果表明,基于卷积神经网络的负荷辨识准确率高、识别速度快,模型具有良好的泛化能力,能够有效的实现负荷辨识。 展开更多
关键词 非侵入负荷监测 特征识别 卷积神经网络 智能特征学习
下载PDF
基于深度学习的高分遥感影像水体提取模型研究 被引量:55
13
作者 陈前 郑利娟 +4 位作者 李小娟 徐崇斌 吴俣 谢东海 刘亮 《地理与地理信息科学》 CSCD 北大核心 2019年第4期43-49,I0001,共8页
从高分辨率卫星遥感影像中提取水体对于水体监测和管理具有重要意义,而阴影和建筑物的干扰制约了水体提取的精度。该文分别利用卷积神经网络和Deeplabv3语义分割神经网络,开展了高分辨率卫星遥感数据水体提取研究,探讨深度学习在水体提... 从高分辨率卫星遥感影像中提取水体对于水体监测和管理具有重要意义,而阴影和建筑物的干扰制约了水体提取的精度。该文分别利用卷积神经网络和Deeplabv3语义分割神经网络,开展了高分辨率卫星遥感数据水体提取研究,探讨深度学习在水体提取中的应用能力。首先,以高分辨率卫星遥感影像为数据源,分别建立水体分类数据集和水体语义分割数据集,构建并训练卷积神经网络及Deeplabv3网络,得到最优的两种水体提取模型,进一步利用同一测试集对两种模型和其他方法进行精度评价。结果表明,卷积神经网络、Deeplabv3方法精度分别达到95.09%和92.14%,均高于水体指数法、面向对象法和支持向量机法;而且该两种深度学习方法都能够有效去除阴影和建筑物的影响,说明了深度学习方法的有效性,其中,卷积神经网络的适用性更好。 展开更多
关键词 遥感影像 水体提取 卷积神经网络 Deeplabv3
下载PDF
地震油气储层的小样本卷积神经网络学习与预测 被引量:54
14
作者 林年添 张栋 +4 位作者 张凯 王守进 付超 张建彬 张冲 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2018年第10期4110-4125,共16页
地震储层预测是油气勘探的重要组成部分,但完成该项工作往往需要经历多个环节,而多工序或长周期的研究分析降低了勘探效率.基于油气藏分布规律及其在地震响应上所具有的特点,本文引入卷积神经网络深度学习方法,用于智能提取、分类并识... 地震储层预测是油气勘探的重要组成部分,但完成该项工作往往需要经历多个环节,而多工序或长周期的研究分析降低了勘探效率.基于油气藏分布规律及其在地震响应上所具有的特点,本文引入卷积神经网络深度学习方法,用于智能提取、分类并识别地震油气特征.卷积神经网络所具有的强适用性、强泛化能力,使之可以在小样本条件下,对未解释地震数据体进行全局优化提取特征并加以分类,即利用有限的已知含油气井段信息构建卷积核,以地震数据为驱动,借助卷积神经网络提取、识别蕴藏其中的地震油气特征.将本方案应用于模型数据及实际数据的验算,取得了预期效果.通过与实际钻井信息及基于多波地震数据机器学习所预测结果对比,本方案利用实际数据所演算结果与实际情况有较高的吻合度.表明本方案具有一定的可行性,为缩短相关环节的周期提供了一种新的途径. 展开更多
关键词 人工智能 深度学习 卷积神经网络 卷积核 地震数据驱动 油气藏识别
下载PDF
基于深度学习的短文本评论产品特征提取及情感分类研究 被引量:52
15
作者 李杰 李欢 《情报理论与实践》 CSSCI 北大核心 2018年第2期143-148,共6页
[目的/意义]构建在线评论的产品特征提取及情感分类模型,可以为产品设计人员进行产品优化改进提供决策支持。[方法/过程]提出了基于卷积神经网络算法的产品特征提取及情感分类模型。模型采用卷积神经网络进行短文本评论情感分类,以情感... [目的/意义]构建在线评论的产品特征提取及情感分类模型,可以为产品设计人员进行产品优化改进提供决策支持。[方法/过程]提出了基于卷积神经网络算法的产品特征提取及情感分类模型。模型采用卷积神经网络进行短文本评论情感分类,以情感分类标签标注相应评论中提取的产品特征词,并利用词向量对产品特征词聚类。通过爬取的笔记本电脑和手机评论对模型进行训练和测试。[结果/结论]结果表明,模型能够实现有效的产品特征提取及高准确率情感分类,是在线评论分析的有效模型。 展开更多
关键词 产品特征 情感分类 在线评论 卷积神经网络 深度学习
原文传递
基于条件生成对抗网络的可再生能源日前场景生成方法 被引量:52
16
作者 董骁翀 孙英云 蒲天骄 《中国电机工程学报》 EI CSCD 北大核心 2020年第17期5527-5535,共9页
随着可再生能源渗透率的不断提高,如何有效地描述其出力不确定性是电力系统日前调度所面临的巨大挑战。针对该问题,该文提出一种基于条件生成对抗网络的可再生能源日前场景生成方法,该方法采用Wasserstein距离作为判别器损失函数,并设... 随着可再生能源渗透率的不断提高,如何有效地描述其出力不确定性是电力系统日前调度所面临的巨大挑战。针对该问题,该文提出一种基于条件生成对抗网络的可再生能源日前场景生成方法,该方法采用Wasserstein距离作为判别器损失函数,并设计适用于可再生能源日前场景生成的网络结构,通过生成对抗网络的博弈训练使生成器学习到预测条件下噪声分布与日前场景集之间的映射关系。该文使用实际风电数据(包括预测和实测数据)对所提方法进行测试,并与传统Markov链场景生成方法进行对比验证,结果表明所提模型能更精确地描述日前风电不确定性。 展开更多
关键词 可再生能源 不确定性 场景生成 条件生成对抗网络 卷积神经网络
下载PDF
基于深度卷积神经网络的红外船只目标检测方法 被引量:49
17
作者 王文秀 傅雨田 +1 位作者 董峰 李锋 《光学学报》 EI CAS CSCD 北大核心 2018年第7期152-158,共7页
针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采... 针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采用改进的AlexNet(一种深度CNN模型)进行船只目标识别,将提取的候选区域送入改进的AlexNet进行特征提取和预测,得到最终检测结果。分水岭方法可大大减少候选区域检测时间,以及减少深度CNN识别时间。利用实验室自制的红外成像系统获取近千张红外船只图像数据,并对其平移缩放形成的数据集进行仿真实验。结果表明,标记分水岭与深度CNN的结合,可有效识别船只目标,所提方法具有良好的性能,能够更加快速准确地识别红外船只目标。 展开更多
关键词 测量 红外船只目标检测 标记分水岭 卷积神经网络 图像分割
原文传递
基于卷积神经网络的结构损伤识别 被引量:46
18
作者 李雪松 马宏伟 林逸洲 《振动与冲击》 EI CSCD 北大核心 2019年第1期159-167,共9页
为解决结构的健康监测问题,找到合适的结构损伤识别特征,使用卷积神经网络提取结构特征来识别损伤,并通过IASC-ASCE SHM Benchmark第一阶段模拟数据验证其有效性,同时与小波包频带能量特征、前五阶本征模态函数能量特征做同分类器准确... 为解决结构的健康监测问题,找到合适的结构损伤识别特征,使用卷积神经网络提取结构特征来识别损伤,并通过IASC-ASCE SHM Benchmark第一阶段模拟数据验证其有效性,同时与小波包频带能量特征、前五阶本征模态函数能量特征做同分类器准确率对比,证明了卷积神经网络在自动提取特征方面的优势。在分析卷积神经网络自动提取特征的鲁棒性时,发现单一噪声数据训练的特征抗噪能力有一定局限性,为了获得更好的特征抗噪能力,提出混合噪声训练模式,验证了含噪声0%~50%的样本数据,均取得良好识别结果。同时在进行卷积核特征可视化工作中发现,混噪模式训练的卷积核能够识别更多阶次的频率信息。 展开更多
关键词 卷积神经网络 BENCHMARK 小波包频带能量 经验模式分解
下载PDF
基于深度学习的群猪图像实例分割方法 被引量:46
19
作者 高云 郭继亮 +3 位作者 黎煊 雷明刚 卢军 童宇 《农业机械学报》 EI CAS CSCD 北大核心 2019年第4期179-187,共9页
群养饲喂模式下猪群有聚集在一起的习性,特别是躺卧时,当使用机器视觉跟踪监测猪只时,图像中存在猪体粘连,导致分割困难,成为实现群猪视觉追踪和监测的瓶颈。根据实例分割原理,把猪群中的猪只看作一个实例,在深度卷积神经网络基础上建立... 群养饲喂模式下猪群有聚集在一起的习性,特别是躺卧时,当使用机器视觉跟踪监测猪只时,图像中存在猪体粘连,导致分割困难,成为实现群猪视觉追踪和监测的瓶颈。根据实例分割原理,把猪群中的猪只看作一个实例,在深度卷积神经网络基础上建立Pig Net网络,对群猪图像尤其是对粘连猪体进行实例分割,实现独立猪体的分辨和定位。Pig Net网络采用44层卷积层作为主干网络,经区域候选网络(Region proposal networks,RPN)提取感兴趣区域(ROI),并和主干网络前向传播的特征图共享给感兴趣区域对齐层(Region of interest align,ROIAlign),分支通过双线性插值计算目标空间,三分支并行输出ROI目标的类别、回归框和掩模。Mask分支采用平均二值交叉熵损失函数计算独立猪体的目标掩模损失。连续28 d采集6头9. 6 kg左右大白仔猪图像,抽取前7 d内各不同时段、不同行为模式群养猪图像2 500幅作为训练集和验证集,训练集和验证集的比例为4∶1。结果表明,Pig Net网络模型在训练集上总分割准确率达86. 15%,在验证集上准确率达85. 40%。本文算法对不同形态、粘连严重的群猪图像能够准确分割出独立的猪个体目标。将本文算法与Mask R-CNN模型及其改进模型进行对比,准确率比Mask RCNN模型高11. 40个百分点,单幅图像处理时间为2. 12 s,比Mask R-CNN模型短30 ms。 展开更多
关键词 群养猪 图像分割 实例分割 卷积神经网络 深度学习 粘连猪体
下载PDF
基于EMD二值化图像和CNN的滚动轴承故障诊断 被引量:45
20
作者 谷玉海 朱腾腾 +1 位作者 饶文军 黄艳庭 《振动.测试与诊断》 EI CSCD 北大核心 2021年第1期105-113,203,共10页
针对传统故障诊断方法识别准确率低、泛化能力差,而基于深度学习的故障诊断普遍存在需要海量训练数据的问题,提出了一种基于经验模态分解(empirical mode decomposition,简称EMD)与卷积神经网络(convolutional neural networks,简称CNN... 针对传统故障诊断方法识别准确率低、泛化能力差,而基于深度学习的故障诊断普遍存在需要海量训练数据的问题,提出了一种基于经验模态分解(empirical mode decomposition,简称EMD)与卷积神经网络(convolutional neural networks,简称CNN)的滚动轴承智能故障诊断方法。首先,对轴承振动数据进行EMD,同时对相关系数最大的本征模函数(intrinsic mode function,简称IMF)分量进行频谱分析,获取频谱图,并将频谱图数据压缩成特征二值化图像作为CNN分类网络训练的输入数据;其次,将正常状态下和各类故障状态下的滚动轴承特征二值化图像作为CNN的输入得到训练模型,利用训练好的模型对各类故障进行分类识别。实验结果表明:在较少的训练数据下,轴承故障诊断准确率达到97.61%,远超过使用反向传播神经网络(back propagation,简称BP)和概率神经网络(probabilistic neural network,简称PNN)方法,证明了所提出方法与传统故障诊断方法相比能够更加准确地识别各类故障类别;对原始信号加入6 dB白噪声后的识别准确率也达到了96.19%,证明了所提出方法具有良好的泛化能力与抗噪性能。 展开更多
关键词 经验模态分解 卷积神经网络 滚动轴承 故障诊断
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部