期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
基于多尺度特征注意力机制的人脸表情识别 被引量:27
1
作者 张鹏 孔韦韦 滕金保 《计算机工程与应用》 CSCD 北大核心 2022年第1期182-189,共8页
针对传统卷积神经网络在人脸表情识别过程中存在有效特征提取针对性不强、识别准确率不高的问题,提出一种基于多尺度特征注意力机制的人脸表情识别方法。用两层卷积层提取浅层特征信息;在Inception结构基础上并行加入空洞卷积,用来提取... 针对传统卷积神经网络在人脸表情识别过程中存在有效特征提取针对性不强、识别准确率不高的问题,提出一种基于多尺度特征注意力机制的人脸表情识别方法。用两层卷积层提取浅层特征信息;在Inception结构基础上并行加入空洞卷积,用来提取人脸表情的多尺度特征信息;引入通道注意力机制,提升模型对重要特征信息的表示能力;最后,将得到的特征输入Softmax层进行分类。通过在公开数据集FER2013和CK+上进行仿真实验,分别取得了68.8%和96.04%的识别准确率,结果表明该方法相比许多经典算法有更好的识别效果。 展开更多
关键词 卷积神经网络 人脸表情识别 空洞卷积 通道注意力机制
下载PDF
基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法 被引量:25
2
作者 赵欣欣 钱胜胜 刘晓光 《中国铁道科学》 EI CAS CSCD 北大核心 2018年第4期56-62,共7页
为及时发现铁路桥梁高强螺栓偶发的延迟断裂并补充新螺栓,降低铁路桥梁连接失效风险,开展基于卷积神经网络的桥梁高强螺栓缺失图像识别方法研究。该识别方法的主网络由5个卷积层、5个最大值池化层和2个全连接层的卷积神经网络组成。提... 为及时发现铁路桥梁高强螺栓偶发的延迟断裂并补充新螺栓,降低铁路桥梁连接失效风险,开展基于卷积神经网络的桥梁高强螺栓缺失图像识别方法研究。该识别方法的主网络由5个卷积层、5个最大值池化层和2个全连接层的卷积神经网络组成。提出在主网络上附加通道和空间混合注意力子网络,分别对不同输入图像的高层不同通道语义特征和不同区域赋予不同权重,提高图像的特征和区域敏感性,进而提高网络的识别准确率。通过随机裁剪、翻转、颜色变化、仿射变换增强和数据均衡操作,增加训练数据的多样性和改善数据的不平衡性。基于真实场景螺栓缺失场景识别结果表明,识别方法的准确率达到94.9%,比常见识别方法提高了4.9%。 展开更多
关键词 卷积神经网络 铁路桥梁 高强螺栓缺失 图像识别 通道注意力 空间注意力
下载PDF
面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO 被引量:19
3
作者 卢俊哲 张铖怡 +1 位作者 刘世鹏 宁德军 《计算机工程与应用》 CSCD 北大核心 2023年第15期318-328,共11页
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始... 基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。 展开更多
关键词 带钢表面缺陷检测 可形变卷积网络 深度可分离卷积 ECA通道注意力 轻量级YOLOv5 图像预处理
下载PDF
基于残差通道注意力和多级特征融合的图像超分辨率重建 被引量:14
4
作者 席志红 袁昆鹏 《激光与光电子学进展》 CSCD 北大核心 2020年第4期254-262,共9页
针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差... 针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差通道注意力,自适应校正信道的特征响应,提高了网络的表征能力。网络整体使用递归结构,在每个递归块内实现参数共享,减少了参数数量;多级特征融合的方式可以充分提取图像特征;用分组卷积代替传统卷积,进一步减少了参数数量,并降低了计算复杂度。所提算法在保证图像重建质量的同时,减少了模型的参数量并降低了计算复杂度,在图片放大4倍时,参数量和计算复杂度分别约为VDSR的0.33和0.02。 展开更多
关键词 机器视觉 超分辨率 深度学习 递归结构 分组卷积 残差通道注意力 多级特征融合
原文传递
空洞可分离卷积和注意力机制的实时语义分割 被引量:8
5
作者 王囡 侯志强 +2 位作者 蒲磊 马素刚 程环环 《中国图象图形学报》 CSCD 北大核心 2022年第4期1216-1225,共10页
目的为满足语义分割算法准确度和实时性的要求,提出了一种基于空洞可分离卷积模块和注意力机制的实时语义分割方法。方法将深度可分离卷积与不同空洞率的空洞卷积相结合,设计了一个空洞可分离卷积模块,在减少模型计算量的同时,能够更高... 目的为满足语义分割算法准确度和实时性的要求,提出了一种基于空洞可分离卷积模块和注意力机制的实时语义分割方法。方法将深度可分离卷积与不同空洞率的空洞卷积相结合,设计了一个空洞可分离卷积模块,在减少模型计算量的同时,能够更高效地提取特征;在网络输出端加入了通道注意力模块和空间注意力模块,增强对特征的通道信息和空间信息的表达并与原始特征融合,以进一步提高特征的表达能力;将融合的特征上采样到原图大小,预测像素类别,实现语义分割。结果在Cityscapes数据集和CamVid数据集上进行了实验验证,分别取得70.4%和67.8%的分割精度,速度达到71帧/s,而模型参数量仅为0.66 M。在不影响速度的情况下,分割精度比原始方法分别提高了1.2%和1.2%,验证了该方法的有效性。同时,与近年来的实时语义分割方法相比也表现出一定优势。结论本文方法采用空洞可分离卷积模块和注意力模块,在减少模型计算量的同时,能够更高效地提取特征,且在保证实时分割的情况下提升分割精度,在准确度和实时性之间达到了有效的平衡。 展开更多
关键词 实时语义分割 深度可分离卷积 空洞卷积 通道注意力 空间注意力
原文传递
基于注意力机制的卷积循环网络语音降噪 被引量:9
6
作者 徐浩森 姜囡 齐志坤 《科学技术与工程》 北大核心 2022年第5期1950-1957,共8页
不同噪声在频谱上具有不同的特性,为了解决卷积神经网络对含有不同噪声的语音降噪的局限性,通过引入通道注意力机制作为卷积循环网络的中间层,将卷积层中不同功能的卷积核赋予不同的权重,使模型在训练时能够对输入数据更有针对性地去除... 不同噪声在频谱上具有不同的特性,为了解决卷积神经网络对含有不同噪声的语音降噪的局限性,通过引入通道注意力机制作为卷积循环网络的中间层,将卷积层中不同功能的卷积核赋予不同的权重,使模型在训练时能够对输入数据更有针对性地去除噪声部分,从而达到更好的降噪效果。针对含有15种噪声的含噪语音分别应用循环神经网络、编解码卷积网络和卷积循环神经网络等三种模型进行降噪处理,结果表明引入注意力机制的模型相比于其他两种模型,在感知语音质量评价(perceptual evaluation of speech quality,PESQ)和短时客观可懂度(short time objective intelligibility,STOI)评分上都有所提高,且引入注意力机制的模型能够更好地保留语音的谐波信息。 展开更多
关键词 语音降噪 自编解码网络 卷积循环网络 通道注意力机制
下载PDF
基于深度可分离卷积的多神经网络恶意代码检测模型 被引量:8
7
作者 蒋瑞林 覃仁超 《计算机应用》 CSCD 北大核心 2023年第5期1527-1533,共7页
针对传统的恶意代码检测方法存在成本过高和检测结果不稳定等问题,提出一种基于深度可分离卷积的多神经网络恶意代码检测模型。该模型使用深度可分离卷积(DSC)、SENet(Squeeze-and-Excitation Network)通道注意力机制和灰度共生矩阵(GLC... 针对传统的恶意代码检测方法存在成本过高和检测结果不稳定等问题,提出一种基于深度可分离卷积的多神经网络恶意代码检测模型。该模型使用深度可分离卷积(DSC)、SENet(Squeeze-and-Excitation Network)通道注意力机制和灰度共生矩阵(GLCM),通过三个轻型神经网络与灰度图像纹理特征分类并联检测恶意代码家族及其变种,将多个强分类器检测结果通过朴素贝叶斯分类器融合,在提高检测准确率的同时减少网络计算开销。在MalVis+良性数据的混合数据集上的实验结果表明,该模型对恶意代码家族及其变种的检测准确率达到97.43%,相较于ResNet50、VGGNet模型分别提高了6.19和2.29个百分点,而它的参数量只有ResNet50模型的68%和VGGNet模型的13%;在malimg数据集上该模型的检测准确率达到99.31%。可见,所提模型检测效果较好,且参数量也有所降低。 展开更多
关键词 恶意代码 神经网络 深度可分离卷积 SENet 通道注意力机制 灰度共生矩阵
下载PDF
基于深度学习的架空输电导线缺陷检测方法研究 被引量:7
8
作者 翟学明 李晓 翟羽佳 《电网技术》 EI CSCD 北大核心 2023年第3期1022-1030,共9页
无人机巡检图像中,架空输电导线断股、表面磨损等缺陷存在人工复检效率低、误检漏检率高的问题,为此提出了一种基于深度学习的架空输电导线缺陷智能检测方法。该方法以Unet为基础网络,结合迁移学习的思想,将VGG16(visual geometry group... 无人机巡检图像中,架空输电导线断股、表面磨损等缺陷存在人工复检效率低、误检漏检率高的问题,为此提出了一种基于深度学习的架空输电导线缺陷智能检测方法。该方法以Unet为基础网络,结合迁移学习的思想,将VGG16(visual geometry group,16 weight layers)作为主干特征提取网络,并且将VGG16在ImageNet数据集上训练的权重作为预训练权重,以增强训练效果;然后将网络中的普通卷积用深度可分离卷积代替,有效地减少了网络的参数量;最后引入轻量级的高效通道注意力模块(efficient channel attention,ECA),实现不降维的局部跨信道交互策略,突出重要特征的同时克服了性能和复杂性之间的矛盾。在自建的输电导线缺陷数据集上,对方法进行了功能与性能测试,实验结果表明所提方法在导线断股检测上的准确率达到89.81%,在表面擦痕检测上的准确率达到90.86%,在表面刮损检测上的准确率达到93.58%,平均交并比(mean intersection over union,MIoU)值为86.12%,单张检测速度相对于Unet网络提升了8倍左右,提高了网络检测速度和检测精度。 展开更多
关键词 无人机巡检图像 输电导线缺陷检测 迁移学习 深度可分离卷积 高效通道注意力
下载PDF
基于Ghost卷积与注意力机制的SAR图像建筑物检测算法 被引量:7
9
作者 严继伟 苏娟 李义红 《兵工学报》 EI CAS CSCD 北大核心 2022年第7期1667-1675,共9页
针对深度卷积神经网络存在模型参数量大、占用内存资源等问题,提出了一种基于轻量化网络的SAR图像建筑物检测算法。首先以旋转目标检测算法R-centernet为基础,将主干网络中的传统卷积替换为Ghost卷积,并构建Ghost-ResNet网络,降低模型... 针对深度卷积神经网络存在模型参数量大、占用内存资源等问题,提出了一种基于轻量化网络的SAR图像建筑物检测算法。首先以旋转目标检测算法R-centernet为基础,将主干网络中的传统卷积替换为Ghost卷积,并构建Ghost-ResNet网络,降低模型参数量;其次提出了融合宽高信息的通道注意力模块,增强网络对图像中显著区域的精确定位能力;使用CARAFE上采样代替网络中的DCN模块,在上采样过程中充分结合特征图信息,提高目标检测能力;最后使用改进的R-centernet算法在旋转标注的SAR图像建筑物数据集上进行训练与测试。实验结果表明,相比于原始R-centernet算法,改进后的算法准确率提高了3.8%,召回率提高了1.2%,检测速度提高了12帧/s。 展开更多
关键词 轻量化网络 SAR图像建筑物检测 旋转目标检测 Ghost卷积 通道注意力 CARAFE上采样
下载PDF
基于自适应特征增强分组卷积网络的电能质量扰动分类 被引量:5
10
作者 张锐 张闯 +1 位作者 高辉 程政铎 《中国电机工程学报》 EI CSCD 北大核心 2023年第15期5808-5817,共10页
分布式电源在接入电网时会产生复杂的电能质量扰动(power quality disturbances,PQDs),为提高对PQDs信号分类识别的准确率,构建了自适应特征增强分组卷积神经网络(grouping convolutional neural network with adaptive feature enhance... 分布式电源在接入电网时会产生复杂的电能质量扰动(power quality disturbances,PQDs),为提高对PQDs信号分类识别的准确率,构建了自适应特征增强分组卷积神经网络(grouping convolutional neural network with adaptive feature enhanced network,GCNN-AFEN)。GCNN-AFEN模型的核心:首先,对PQDs信号进行S变换形成时频矩阵图像,利用CNN与结构稀疏的GCNN相结合作为特征学习的基础框架以减少模型参数,进而提高运算速度;然后,AEFN模块通过通道注意力机制、频域特征增强和软阈值去噪环节,自适应学习扰动类型与对应特征图的相关性,增加信噪比,突出能够代表扰动类别的深层特征;最后,通过全连接层(fully connected layers,FC)和Softmax分类器进行分类识别。仿真实验表明,提出的模型对于电能质量扰动信号具有较高的分类识别准确率和噪声鲁棒性,能够用于电能质量扰动的快速识别和分类。 展开更多
关键词 电能质量扰动 分组卷积 混洗卷积 通道注意力机制 自适应特征增强网络
下载PDF
自适应上下文特征的多尺度目标检测算法 被引量:5
11
作者 王凤随 陈金刚 +1 位作者 王启胜 刘芙蓉 《智能系统学报》 CSCD 北大核心 2022年第2期276-285,共10页
识别多尺度目标是检测任务中的一项挑战,针对检测中的多尺度问题,提出自适应上下文特征的多尺度目标检测算法。针对不同尺度的目标需要不同大小感受野特征进行识别的问题,构建了一种多感受野特征提取网络,通过多分支并行空洞卷积,从高... 识别多尺度目标是检测任务中的一项挑战,针对检测中的多尺度问题,提出自适应上下文特征的多尺度目标检测算法。针对不同尺度的目标需要不同大小感受野特征进行识别的问题,构建了一种多感受野特征提取网络,通过多分支并行空洞卷积,从高层语义特征中挖掘标签中的上下文信息;针对不同尺度目标的语义特征出现在不同分辨率特征图中的问题,基于改进的通道注意力机制,提出自适应的特征融合网络,通过学习不同分辨率特征图之间的相关性,在全局语义特征中融合局部位置特征;利用不同尺度的特征图识别不同尺度的物体。在PASCAL VOC数据集上对本文算法进行验证,本文方法的检测精度达到了85.74%,相较于Faster RCNN检测精度提升约8.7%,相较于基线检测算法YOLOv3+提升约2.06%。 展开更多
关键词 机器视觉 目标检测 卷积神经网络 通道注意力 并行空洞卷积 多尺度特征融合 上下文特征 深度学习
下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
12
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积块 混合空洞卷积 通道注意力机制 转置卷积
下载PDF
一种轻量化的金字塔卷积
13
作者 秦斌斌 孙金杨 《软件》 2024年第4期29-36,70,共9页
金字塔卷积(Pyconv)是近年提出的一种金字塔式多层结构,可以提取多尺度的特征信息,已被应用于多种计算机视觉任务,但其冗余度高,参数量大。因此,本文提出了一种轻量化的金字塔卷积light_Pyconv,其使用卷积分解和分组卷积降低卷积冗余度... 金字塔卷积(Pyconv)是近年提出的一种金字塔式多层结构,可以提取多尺度的特征信息,已被应用于多种计算机视觉任务,但其冗余度高,参数量大。因此,本文提出了一种轻量化的金字塔卷积light_Pyconv,其使用卷积分解和分组卷积降低卷积冗余度,同时,将残差单元、通道混洗技术以及注意力机制引入设计,以维持网络的准确率并加速有效特征的提取。在VGG13网络上,参数量从1.96M下降到了0.56M,而在CIFAR-10和CIFAR-100数据集上的准确率仅分别下降了0.87%和0.04%;在ResNet18网络上,参数量从9.22M下降到了7.72M,而在两个数据集上的准确率仅分别下降了0.24%和0.76%。light_Pyconv在降低模型尺寸的同时,其在收敛速度和准确率波动上的表现仍优于原始网络结构。 展开更多
关键词 金字塔卷积 轻量级的网络 多尺度特征 卷积神经网络 卷积切除 频道的关注
下载PDF
融合深度监督与改进YOLOv8的海上目标检测 被引量:1
14
作者 张建东 《南京信息工程大学学报》 CAS 北大核心 2024年第4期482-489,共8页
针对海上目标姿态复杂且尺度多变,导致现有人工智能算法难以稳定检测的问题,提出一种融合深度监督与改进YOLOv8的海上目标检测算法.首先,设计了多尺度卷积模块,提取目标多种感受野的特征信息,减少漏检率;然后,添加深度监督网络,提高网... 针对海上目标姿态复杂且尺度多变,导致现有人工智能算法难以稳定检测的问题,提出一种融合深度监督与改进YOLOv8的海上目标检测算法.首先,设计了多尺度卷积模块,提取目标多种感受野的特征信息,减少漏检率;然后,添加深度监督网络,提高网络对深层类别信息及浅层位置信息的利用率,优化主干网络的目标特征提取性能;最后,在网络检测头部分引入通道注意力机制,过滤无关信息,增强对关键特征的识别率.在海上目标数据集中的实验结果表明,改进算法的mAP值达到93.69%,召回率达到85.16%,相比原模型分别提高了7.38、8.52个百分点,且优于对比的经典算法和新颖算法,检测时间约14 ms,满足海上实时目标检测需求,可为航运管理、预防海上事故等提供有效技术参考. 展开更多
关键词 海上目标 深度学习 深度监督 多尺度卷积 通道注意力机制
下载PDF
改进YOLACT的服装图像实例分割方法 被引量:1
15
作者 顾梅花 董晓晓 +1 位作者 花玮 崔琳 《纺织高校基础科学学报》 CAS 2024年第2期82-91,共10页
针对服装图像实例分割精度与速度较低的问题,提出一种基于改进YOLACT的服装图像实例分割方法。以YOLACT为基础模型,首先在ResNet101网络中采用深度可分离卷积代替传统卷积,减少模型计算量和模型参数,加快模型速度;然后,在模板生成网络... 针对服装图像实例分割精度与速度较低的问题,提出一种基于改进YOLACT的服装图像实例分割方法。以YOLACT为基础模型,首先在ResNet101网络中采用深度可分离卷积代替传统卷积,减少模型计算量和模型参数,加快模型速度;然后,在模板生成网络后引入高效通道注意力模块,优化输出特征,捕获服装图像的跨通道交互信息,加强对掩膜分支的特征提取能力;最后,训练过程采用LeakyReLU激活函数,避免反向传播时权值信息得不到及时更新,提升模型对服装图像负值特征信息的提取能力。结果表明:与原模型相比,所提方法能有效减少模型参数量,在提升速度的同时提高了精度,其速度提升了4.82帧/s,平均精度提升了5.4%。 展开更多
关键词 服装图像实例分割 YOLACT 深度可分离卷积 高效通道注意力 激活函数
下载PDF
基于递归门控卷积的遥感图像超分辨率研究 被引量:1
16
作者 刘长新 吴宁 +2 位作者 胡俐蕊 高霸 高学山 《计算机科学》 CSCD 北大核心 2024年第2期205-216,共12页
由于受到硬件条件的限制,通常难以获得具有高分辨率(HR)的遥感图像。利用单幅图像超分辨率(SISR)技术对低分辨率(LR)遥感图像进行超分辨率重建是获取高分辨率遥感图像的常用方法。近年来,在图像超分辨率领域引入的卷积神经网络(CNN)改... 由于受到硬件条件的限制,通常难以获得具有高分辨率(HR)的遥感图像。利用单幅图像超分辨率(SISR)技术对低分辨率(LR)遥感图像进行超分辨率重建是获取高分辨率遥感图像的常用方法。近年来,在图像超分辨率领域引入的卷积神经网络(CNN)改进了图像重建性能。然而,现有的基于CNN的超分辨率模型通常使用低阶注意力机制提取深层特征,其表征能力有待提高,且常规卷积的感受野有限,缺乏对远距离依赖关系的学习。为了解决以上问题,提出了一种基于递归门控卷积的遥感图像超分辨率方法RGCSR。该方法引入递归门控卷积g n Conv学习全局依赖和局部细节,通过高阶空间交互来获取高阶特征。首先,使用由高阶交互子模块(HorBlock)和前馈神经网络(FFN)组成的高阶交互——前馈神经网络模块(HFB)提取高阶特征。其次,利用由通道注意力(CA)和g n Conv构建的特征优化模块(FOB)优化各个中间模块的输出特征。最后,在多个数据集上的对比结果表明,RGCSR比现有的基于CNN的超分辨率方法具备更好的重建性能和视觉效果。 展开更多
关键词 递归门控卷积 高阶空间交互 通道注意力 遥感图像 超分辨率
下载PDF
融合深度迁移学习和改进ThunderNet的瓷砖表面缺陷检测 被引量:1
17
作者 陈克琼 卓士虎 +3 位作者 赵晨曦 傅立涛 王家铭 李帷韬 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期208-218,共11页
瓷砖生产过程中由于环境的复杂性和随机性导致缺陷特性各异,实际中要构建大规模、高质量的瓷砖表面缺陷数据样本非常困难,而小样本条件下的可分特征信息不足对瓷砖表面缺陷检测的精度有较大影响。针对这一问题,探索了一种融合深度迁移... 瓷砖生产过程中由于环境的复杂性和随机性导致缺陷特性各异,实际中要构建大规模、高质量的瓷砖表面缺陷数据样本非常困难,而小样本条件下的可分特征信息不足对瓷砖表面缺陷检测的精度有较大影响。针对这一问题,探索了一种融合深度迁移学习和改进两阶段ThunderNet网络的瓷砖表面缺陷检测方法。首先,提出了一种基于改进ThunderNet网络的瓷砖表面缺陷检测模型,阐述了模型的结构与功能特点;其次,构造了瓷砖表面缺陷深度特征空间参数迁移决策机制,以有效提升样本特征表征能力;第三,基于可切换空洞卷积(switchable atrous convolution,SAC)优化ShuffleNet骨干网络,增强模型对缺陷形状变化的学习能力;第四,提出了基于多尺度映射和通道注意力(squeeze and excitation,SE)的特征融合算法,实现有限特征层次中瓷砖表面缺陷特征信息多层次差异化表征;最后,给出了融合深度迁移学习和改进ThunderNet网络的瓷砖表面缺陷检测算法。实验数据表明,在相同的瓷砖表面缺陷测试集上,本文方法对于小样本条件下瓷砖表面缺陷检测具有优越的性能,模型平均精度、平均召回率和平均检测速度分别达到87.22%、93.69%、61.6 ms/img,与传统ThunderNet模型相比,平均精度和平均召回率分别提高了9.30%、4.16%,其中,基于SAC最优空洞率组合{1,2},模型精度提高了5.51%,基于SE的最优压缩率24,模型精度提高了6.16%,基于本文迁移机制,模型精度提高了3.86%,同时加速了网络收敛。本文方法相比于传统ThunderNet网络和其他主流检测模型,通过迁移机制知识共享提高小样本对象特征表达能力,通过引入SAC和SE在控制模型规模的前提下实现对象特征的层次化表征,有效提升了模型的实时性和可靠性。 展开更多
关键词 瓷砖表面缺陷检测 可切换空洞卷积 迁移学习 通道注意力 特征融合 小样本
下载PDF
一种轻量化油田危险区域入侵检测算法 被引量:5
18
作者 田枫 白欣宇 +1 位作者 刘芳 姜文文 《智能系统学报》 CSCD 北大核心 2022年第3期634-642,共9页
油田危险区域入侵是油田安防领域的核心问题,以目标检测的方式捕获实时发生的危险是区域入侵任务的重点。为了提高模型的实时性,本文提出结合跨阶段线性瓶颈模块和通道注意力机制的轻量化YOLO检测算法。首先以轻量化卷积模块与跨阶段局... 油田危险区域入侵是油田安防领域的核心问题,以目标检测的方式捕获实时发生的危险是区域入侵任务的重点。为了提高模型的实时性,本文提出结合跨阶段线性瓶颈模块和通道注意力机制的轻量化YOLO检测算法。首先以轻量化卷积模块与跨阶段局部残差模块级联的跨阶段线性瓶颈模块搭建特征提取网络,大大减少了模型的参数量。在特征金字塔的特征融合模块前使用改进的通道注意力机制,增强特征的表达能力与特征的全局的关联性。在特征推理模块,使用中心归一化非极大值抑制方法进行输出优化,避免了对邻近目标的错误抑制。本算法在VOC2007数据集实验,精确率可达74.9%,优于大多轻量化检测算法,已在冀东油田部署应用,有效保证了油田作业人员的生命财产安全。 展开更多
关键词 油田危险区域入侵 目标检测 深度可分离卷积 轻量化 通道注意力 深度学习 特征融合 特征提取
下载PDF
基于改进卷积的多尺度表情识别 被引量:1
19
作者 郑浩 赵光哲 《计算机工程与应用》 CSCD 北大核心 2024年第2期231-243,共13页
在表情识别任务中由于人脸特征的多样性和不确定性,导致在特征提取阶段容易出现特征缺失以及特征提取率低下等问题,与此同时,在具有特征复用结构的网络训练过程中还会堆积大量冗余特征,从而影响特征质量。针对以上问题,提出了一种基于... 在表情识别任务中由于人脸特征的多样性和不确定性,导致在特征提取阶段容易出现特征缺失以及特征提取率低下等问题,与此同时,在具有特征复用结构的网络训练过程中还会堆积大量冗余特征,从而影响特征质量。针对以上问题,提出了一种基于特征筛选结合改进卷积的残差多尺度特征融合注意力机制模型(residual multiscale feature fusion attentional network,RMFANet)。参考蓝图可分离卷积以及空洞卷积的思想,设计并引入了改进后的卷积形式,从而更有效地将卷积进行分离,提升特征提取效能;在改进后卷积模式的基础上设计并引入了多尺度并行特征提取通路,丰富了特征信息;设计并引入了特征筛选模块,以减少模型训练过程中产生的冗余特征,同时筛选出优质特征,提升特征质量;设计并引入了浅层输入特征处理层,以简化网络结构,降低计算复杂度;引入通道注意力机制,以突出局部关键特征信息;最后引入SMU激活函数,从而提升模型的非线性能力。通过实验结果可以看出,该模型可以在保证较低参数量以及计算成本的前提条件下在Fer2013数据集以及CK+数据集上分别取得70.298%和96.566%的识别准确率,相比较传统算法而言具有更好的鲁棒性。 展开更多
关键词 多尺度表情识别 改进卷积 特征筛选 浅层特征处理 通道注意力机制 SMU激活函数
下载PDF
基于双特征融合引导的深度图像超分辨率重建网络 被引量:1
20
作者 耿浩文 王宇 辛彦玲 《激光与光电子学进展》 CSCD 北大核心 2024年第8期391-398,共8页
针对彩色图像引导的深度图像超分辨率重建算法中存在的纹理转移和深度流失的问题,提出一种基于双特征融合引导的深度图像超分辨率重建网络(DF-Net)。为了充分利用深度和强度特征的关联性,在网络模型的深度恢复重建部分采用双通道融合模... 针对彩色图像引导的深度图像超分辨率重建算法中存在的纹理转移和深度流失的问题,提出一种基于双特征融合引导的深度图像超分辨率重建网络(DF-Net)。为了充分利用深度和强度特征的关联性,在网络模型的深度恢复重建部分采用双通道融合模块(DCM)和双特征引导重建模块(DGM)。利用输入金字塔结构提取深度信息和强度信息的多尺度特征:DCM基于通道注意力机制对深度特征和强度特征进行通道间的特征融合与增强;DGM将深度、强度特征自适应选择融合后实现重建的双特征引导,增加了深度特征的引导作用,改善了纹理转移和深度流失的问题。实验结果表明,所提方法的峰值信噪比(PSNR)和均方根误差(RMSE)优于RMRF、JBU和Depth-Net等方法,尤其4×超分辨率重建结果的PSNR值比其他方法平均提升6.79 dB,RMSE平均下降0.94,取得了较好的深度图像超分辨率重建效果。 展开更多
关键词 图像处理 图像超分辨率重建 卷积神经网络 深度图像 特征融合 通道注意力
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部