This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC gr...This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.展开更多
对于双馈式风电机组而言,当采用转子励磁这一类控制方法进行低压穿越(low voltage ride-through,LVRT)时,根据具体控制方法的不同,其LVRT能力不同。但是由于转子电压幅值的限制,使得转子励磁控制方法存在一个极限。为了分析不对称电压...对于双馈式风电机组而言,当采用转子励磁这一类控制方法进行低压穿越(low voltage ride-through,LVRT)时,根据具体控制方法的不同,其LVRT能力不同。但是由于转子电压幅值的限制,使得转子励磁控制方法存在一个极限。为了分析不对称电压跌落故障下转子励磁控制方法的极限,该文以最小化转子电流为目标,基于最优控制理论设计了一种转子励磁最优控制方法。基于该方法可以得到不对称故障下转子励磁控制方法的极限,进而衡量转子励磁控制下系统对于不对称故障的穿越能力。最后以典型的1.5MW双馈式风电机组为例,分析了3种不对称故障下转子励磁控制的故障穿越能力。由分析结果可得:在相同的电压跌落深度下,相间短路故障最难穿越,两相接地故障次之,单相接地故障最容易穿越。展开更多
基金supported by National Natural Science Foundation of China(No.61473170)Key R&D Plan Project of Shandong Province,PRC(No.2016GSF115018)
文摘This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.
文摘对于双馈式风电机组而言,当采用转子励磁这一类控制方法进行低压穿越(low voltage ride-through,LVRT)时,根据具体控制方法的不同,其LVRT能力不同。但是由于转子电压幅值的限制,使得转子励磁控制方法存在一个极限。为了分析不对称电压跌落故障下转子励磁控制方法的极限,该文以最小化转子电流为目标,基于最优控制理论设计了一种转子励磁最优控制方法。基于该方法可以得到不对称故障下转子励磁控制方法的极限,进而衡量转子励磁控制下系统对于不对称故障的穿越能力。最后以典型的1.5MW双馈式风电机组为例,分析了3种不对称故障下转子励磁控制的故障穿越能力。由分析结果可得:在相同的电压跌落深度下,相间短路故障最难穿越,两相接地故障次之,单相接地故障最容易穿越。