The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment,...The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.展开更多
For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of...For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of the betavoltaic. By employing 63Ni with an apparent emission activity density of 7.26×10~7 and 1.81×10~8 Bq cm^(-2), betavoltaic performance levels were calculated at a vacuum degree range of 1×10~5 to 1×10^(-1) Pa and measured at 1.0×10~5 and 1.0×10~4 Pa, respectively. Results show that betavoltaic performance levels improve significantly as the vacuum degree increases. The maximum output power (P_(max)) exhibits the largest change, followed by short-circuit current (I_(sc)), open-circuit voltage (V_(oc)), and fill factor. The vacuum degree effects on Isc, Voc,and Pmax of the betavoltaic with low apparent activity density 63Ni are more significant than those of the betavoltaic with high apparent activity density ^(63)Ni. Moreover, the improved efficiencies of the measured performances are larger than the calculated efficiencies because of the low ratio of Isc and reverse saturation current (I_0). The values of I0, ideality factor, and shunt resistance were estimated to modify the equivalent circuit model. The calculation results based on this model are closer to the measurement results. The results of this research can provide a theoretical foundation and experimental reference for the study of vacuum degree effects on betavoltaics of the same kind.展开更多
The development of new materials plays a critical role in improving the efficiency of organic solar cells(OSCs).At present,the relatively high-lying highest occupied molecular orbital(HOMO)level of the high-efficiency...The development of new materials plays a critical role in improving the efficiency of organic solar cells(OSCs).At present,the relatively high-lying highest occupied molecular orbital(HOMO)level of the high-efficiency polymer donor is regarded as one of the main reasons for the low open-circuit voltage(V_(OC)).In this work,we introduced the strong electron-withdrawing thiazole unit into the construction of a polymer donor.We designed and prepared an alternating donor-acceptor material,namely PSZ,by copolymerizing 4-methyl thiazole with an electron-donating benzodithiophene unit and studied its application in high-efficiency OSCs.The optical and electrical properties of the new material were characterized by UV-Vis absorption spectroscopy and electrochemical cyclic voltammetry.Results show that PSZ is a typical wide-bandgap material with a high optical bandgap of 2.0 eV and a deep HOMO level of-5.70 eV.When a non-fullerene BTP-eC9 was selected as the acceptor material,V_(OC) reached 0.88 V in the resulting device,and the corresponding power conversion efficiency(PCE)was8.15%.In addition,when PSZ was added as the third component to the binary photoactive combination with PBDB-TF as the donor and BTP-eC9 as the acceptor,V_(OC) of the cell device could be increased,thereby obtaining a high PCE of 17.4%.These results indicated that introducing thiazole units into polymer donors can remarkably reduce the HOMO levels and improve V_(OC) and PCE in OSCs.展开更多
文摘The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11505096 & 11675076)the National Defense Basic Scientific Research Project (Grant No. JCKY2016605C006)+5 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20150735)the Shanghai Aerospace Science and Technology Innovation Fundthe Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1601139B)the Foundation of Graduate Innovation Center in NUAA (Grant No.kfjj20160609)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Grant No. NJ20160031)
文摘For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of the betavoltaic. By employing 63Ni with an apparent emission activity density of 7.26×10~7 and 1.81×10~8 Bq cm^(-2), betavoltaic performance levels were calculated at a vacuum degree range of 1×10~5 to 1×10^(-1) Pa and measured at 1.0×10~5 and 1.0×10~4 Pa, respectively. Results show that betavoltaic performance levels improve significantly as the vacuum degree increases. The maximum output power (P_(max)) exhibits the largest change, followed by short-circuit current (I_(sc)), open-circuit voltage (V_(oc)), and fill factor. The vacuum degree effects on Isc, Voc,and Pmax of the betavoltaic with low apparent activity density 63Ni are more significant than those of the betavoltaic with high apparent activity density ^(63)Ni. Moreover, the improved efficiencies of the measured performances are larger than the calculated efficiencies because of the low ratio of Isc and reverse saturation current (I_0). The values of I0, ideality factor, and shunt resistance were estimated to modify the equivalent circuit model. The calculation results based on this model are closer to the measurement results. The results of this research can provide a theoretical foundation and experimental reference for the study of vacuum degree effects on betavoltaics of the same kind.
基金supported by the National Natural Science Foundation of China(Nos.22122905 and 22075301)。
文摘The development of new materials plays a critical role in improving the efficiency of organic solar cells(OSCs).At present,the relatively high-lying highest occupied molecular orbital(HOMO)level of the high-efficiency polymer donor is regarded as one of the main reasons for the low open-circuit voltage(V_(OC)).In this work,we introduced the strong electron-withdrawing thiazole unit into the construction of a polymer donor.We designed and prepared an alternating donor-acceptor material,namely PSZ,by copolymerizing 4-methyl thiazole with an electron-donating benzodithiophene unit and studied its application in high-efficiency OSCs.The optical and electrical properties of the new material were characterized by UV-Vis absorption spectroscopy and electrochemical cyclic voltammetry.Results show that PSZ is a typical wide-bandgap material with a high optical bandgap of 2.0 eV and a deep HOMO level of-5.70 eV.When a non-fullerene BTP-eC9 was selected as the acceptor material,V_(OC) reached 0.88 V in the resulting device,and the corresponding power conversion efficiency(PCE)was8.15%.In addition,when PSZ was added as the third component to the binary photoactive combination with PBDB-TF as the donor and BTP-eC9 as the acceptor,V_(OC) of the cell device could be increased,thereby obtaining a high PCE of 17.4%.These results indicated that introducing thiazole units into polymer donors can remarkably reduce the HOMO levels and improve V_(OC) and PCE in OSCs.