为了解决因花授粉算法搜索方程存在的不足所导致的易早熟、后期收敛速度慢和寻优精度低的问题,提出了一种新授粉方式的花授粉算法(Flower Pollination Algorithm with New pollination Methods,NMFPA)。该算法把惯性权重和两组随机个体...为了解决因花授粉算法搜索方程存在的不足所导致的易早熟、后期收敛速度慢和寻优精度低的问题,提出了一种新授粉方式的花授粉算法(Flower Pollination Algorithm with New pollination Methods,NMFPA)。该算法把惯性权重和两组随机个体差异矢量融入到全局搜索,组成新的全局授粉,以保持种群的差异性,提高算法的全局探索能力;利用信息共享机制与两种新的变异策略构建新局部授粉策略,增强算法的局部开发能力;为了减少个体进化的盲目性,提高算法的收敛速度和精度,采用基于高斯变异的最优个体来引导其他种群个体的进化方向,并且引入非均匀变异机制增加种群的多样性,避免算法易陷入局部极值点,提升算法的全局优化性能。在22个测试函数上进行数值仿真实验,实验结果和统计分析验证了新算法较标准FPA算法,在收敛精度和速度上有明显提升,且能够较好地解决早熟问题。此外,与已有改进的FPA算法从多角度进行对比分析,实验结果表明改进算法是一种富有竞争力的新算法。同时,运用NMFPA算法求解置换流水车间调度问题,实验结果验证了新算法用于解决实际工程问题是可行的,且具有一定的优势。展开更多
文摘为了解决因花授粉算法搜索方程存在的不足所导致的易早熟、后期收敛速度慢和寻优精度低的问题,提出了一种新授粉方式的花授粉算法(Flower Pollination Algorithm with New pollination Methods,NMFPA)。该算法把惯性权重和两组随机个体差异矢量融入到全局搜索,组成新的全局授粉,以保持种群的差异性,提高算法的全局探索能力;利用信息共享机制与两种新的变异策略构建新局部授粉策略,增强算法的局部开发能力;为了减少个体进化的盲目性,提高算法的收敛速度和精度,采用基于高斯变异的最优个体来引导其他种群个体的进化方向,并且引入非均匀变异机制增加种群的多样性,避免算法易陷入局部极值点,提升算法的全局优化性能。在22个测试函数上进行数值仿真实验,实验结果和统计分析验证了新算法较标准FPA算法,在收敛精度和速度上有明显提升,且能够较好地解决早熟问题。此外,与已有改进的FPA算法从多角度进行对比分析,实验结果表明改进算法是一种富有竞争力的新算法。同时,运用NMFPA算法求解置换流水车间调度问题,实验结果验证了新算法用于解决实际工程问题是可行的,且具有一定的优势。