A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolutio...A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective ceils are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θe) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θe air. The cold outflow is weak (wind speed ≤ 5 m s-1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3℃ and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-kin length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.展开更多
An integral approach has been used to analyze the development of the free convection boundary layer on heated concave surfaces,such as those in horizontal cylinders or a sphere.Based on the non-dimensional laminar and...An integral approach has been used to analyze the development of the free convection boundary layer on heated concave surfaces,such as those in horizontal cylinders or a sphere.Based on the non-dimensional laminar and turbulent velocity and temperature profiles closed form expressions for the boundary layer thickness,velocity scale as well as the boundary layer commencement after the point of instability are obtained.In addition,the mass flowrate to the thermal stratified region is given.展开更多
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit...This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.展开更多
The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat cond...The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat conduction problems is presented,and heat conduction problems consider both convection and radiation boundary conditions.First,the nonlinear governing equation of thermal conductivity,which is dependent on temperature,is transformed into the Laplace equation by introducing the Kirchhoff transformation.The transformation reserves linearity of both the Dirichlet and the Neumann boundary conditions,but the Robin and radiation boundary conditions remain nonlinear.Second,the NMM is employed to solve the Laplace equation using a simple iteration procedure because the nonlinearity focuses on parts of the problem domain boundaries.Finally,the temperature field is retrieved through the inverse Kirchhoff transformation.Typical examples are analyzed,demonstrating the advantages of the Kirchhoff transformation over the direct solution of nonlinear equations using the NewtonRaphson method.This study provides a new method for calculating nonlinear heat conduction.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
A, novel collocation method for a coupled system of singularly perturbed linear equations is presented. This method is based on rational spectral collocation method in barycentric form with sinh transform. By sinh tra...A, novel collocation method for a coupled system of singularly perturbed linear equations is presented. This method is based on rational spectral collocation method in barycentric form with sinh transform. By sinh transform, the original Chebyshev points are mapped into the transformed ones clustered near the singular points of the solution. The results from asymptotic analysis about the singularity solution are employed to determine the parameters in this sinh transform. Numerical experiments are carried out to demonstrate the high accuracy and efficiency of our method.展开更多
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201406013 and GYHY201406003)National Natural Science Foundation of China(91437104)National(Key)Basic Research and Development(973)Program of China(2012CB417202)
文摘A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective ceils are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θe) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θe air. The cold outflow is weak (wind speed ≤ 5 m s-1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3℃ and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-kin length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.
文摘An integral approach has been used to analyze the development of the free convection boundary layer on heated concave surfaces,such as those in horizontal cylinders or a sphere.Based on the non-dimensional laminar and turbulent velocity and temperature profiles closed form expressions for the boundary layer thickness,velocity scale as well as the boundary layer commencement after the point of instability are obtained.In addition,the mass flowrate to the thermal stratified region is given.
基金The National Natural Science Foundation of China(Grant Nos.42030610 and 42075083)the Innovation and Development Project of China Meteorological Administration(CXFZ2022J014)supported this study.
文摘This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.52079002 and 52130905)。
文摘The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat conduction problems is presented,and heat conduction problems consider both convection and radiation boundary conditions.First,the nonlinear governing equation of thermal conductivity,which is dependent on temperature,is transformed into the Laplace equation by introducing the Kirchhoff transformation.The transformation reserves linearity of both the Dirichlet and the Neumann boundary conditions,but the Robin and radiation boundary conditions remain nonlinear.Second,the NMM is employed to solve the Laplace equation using a simple iteration procedure because the nonlinearity focuses on parts of the problem domain boundaries.Finally,the temperature field is retrieved through the inverse Kirchhoff transformation.Typical examples are analyzed,demonstrating the advantages of the Kirchhoff transformation over the direct solution of nonlinear equations using the NewtonRaphson method.This study provides a new method for calculating nonlinear heat conduction.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金Acknowledgments. The support from the National Natural Science Foundation of China under Grants No.10671146 and No.50678122 is acknowledged. The authors are grateful to the referee and the editor for helpful comments and suggestions.
文摘A, novel collocation method for a coupled system of singularly perturbed linear equations is presented. This method is based on rational spectral collocation method in barycentric form with sinh transform. By sinh transform, the original Chebyshev points are mapped into the transformed ones clustered near the singular points of the solution. The results from asymptotic analysis about the singularity solution are employed to determine the parameters in this sinh transform. Numerical experiments are carried out to demonstrate the high accuracy and efficiency of our method.