This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism st...This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism study and molecular design in CLRP.The mechanism study in CLRP aided by microwave,initiated by γ-radiation at low temperature,mediated by iron,in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized.The molecular design in CLRP,especially in RAFT polymerization for mechanism study,and in achieving tailor-made functional polymers is studied and discussed in the later part.展开更多
Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic s...Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.展开更多
基金supported by the National Natural Science Foundation of China (20874069, 50803044, 20974071, 20904036)the Specialized Research Fund for the Doctoral Program of Higher Education (200802850005)the Qing Lan Project the Program of Innovative Research Team of Soochow University
文摘This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism study and molecular design in CLRP.The mechanism study in CLRP aided by microwave,initiated by γ-radiation at low temperature,mediated by iron,in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized.The molecular design in CLRP,especially in RAFT polymerization for mechanism study,and in achieving tailor-made functional polymers is studied and discussed in the later part.
文摘Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.