Compared with traditional hydraulic actuators, an Electro-Mechanical Actuator(EMA)is small in size and light in weight, so it has become more widely used. Aerodynamic load on aircraft control surface varies dramatical...Compared with traditional hydraulic actuators, an Electro-Mechanical Actuator(EMA)is small in size and light in weight, so it has become more widely used. Aerodynamic load on aircraft control surface varies dramatically, and a change of flight environment leads to uncertainties of motor parameters. Therefore, high-dynamic response and strong anti-disturbance capability of an EMA are of great significance for aircraft rudder control and flight attitude adjustment. In order to improve dynamic response and disturbance rejection of an EMA and simplify control parameters tuning, a robust high-dynamic servo system based on Linear Active Disturbance Rejection Control(LADRC) is proposed for an EMA employing a Permanent Magnet Synchronous Motor(PMSM).Firstly, total disturbances of the EMA are analyzed, including parameter uncertainties, load variation, and static friction. A disturbance observer based on a reduced-order Extended State Observer(ESO) is designed to improve the anti-interference ability and dynamic performance. Secondly, the servo control architecture is simplified to a double-loop system, and a composite control of position and speed with acceleration feed-forward is presented to improve the EMA frequency bandwidth.Thirdly, the ideal model of the EMA is transformed into a simple cascade integral form with a disturbance observer, which makes it convenient to analyze and design the controller. Robustness performance comparisons are realized in frequency domain. Finally, simulation and experimental results have verified the effectiveness of the proposed strategy for EMAs.展开更多
A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quad...A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quadrotor taking into account aerodynamical effects induced by lateral wind and actuator faults is considered using the Newton-Euler approach. Then,based on active disturbance rejection control(ADRC), the fault tolerant controller is proposed to recover faulty system and reject perturbations. The developed controller takes wind gusts,actuator faults and measurement noises as total perturbations which are estimated by improved extended state observer(ESO)and compensated by nonlinear feedback control law. So, the developed robust fault tolerant controller can successfully accomplish the tracking of the desired output values. Finally, some simulation studies are given to illustrate the effectiveness of fault recovery of the proposed scheme and also its ability to attenuate external disturbances that are introduced from environmental causes such as wind gusts and measurement noises.展开更多
Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection ...Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.展开更多
In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during th...In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.展开更多
In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six de...In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.展开更多
In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensate...In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensated Acceleration Feedback based Active Disturbance Rejection Control(CAF-ADRC) is established to achieve both desired attitude tracking and load relief performances. In particular, the total disturbance that includes the effects caused by both aerocoefficient perturbations and disturbances is estimated by constructing an Extended State Observer(ESO) to achieve attitude tracking. Furthermore, combined with the normal acceleration due to the engine thrust, the accelerometer measurement is also compensated to enhance the load relief effect.Secondly, the quantitative analysis of ESO and the entire closed-loop system are studied. It can be concluded that the desired attitude tracking and load relief performances can be achieved simultaneously under the proposed approach. Besides, tuning laws of the proposed approach are systematically given, which are divided into ESO, Proportional Derivative(PD) and Compensated Acceleration Feedback(CAF) modules. Moreover, the performances under CAF-ADRC approach can be better than those under CAF based PD(CAF-PD) approach by tuning load relief gain.Finally, the approach presented is applied to a typical control problem of launch vehicles with wind disturbances and parameter uncertainties.展开更多
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those ...Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired po...This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired power plants.The profound interpretation of this paradigm shift,with backward compatibility,is discussed in detail.A few fundamental issues associated with ADRC's applications in thermal processes are discussed,such as implementation,tuning,and the structural changes.Examples and case studies are presented,encompassing coal-fired power plants,gas turbines and nuclear power plants,as well as highlighting results of field applications.Also discussed are future research opportunities brought by ADRC's entry as the baseline control technology in thermal processes.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of activ...In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.展开更多
The paper analyzes and compares the phase margins of four active disturbance rejection control(ADRC)designs,which are based on different common-used extended state observers(ESOs)of various orders,for second-order sys...The paper analyzes and compares the phase margins of four active disturbance rejection control(ADRC)designs,which are based on different common-used extended state observers(ESOs)of various orders,for second-order systems.The quantitative results indicate that,besides good dynamic response,ADRC can guarantee enough phase margin.It is also proved that by decreasing the order of ESO,the phase margin can be increased.Furthermore,it is demonstrated that the phase margins of the ADRC-based systems can be almost uninfluenced by the uncertainties of the system parameters.Finally,the theoretical results are verified by both simulations and experiments on a motion control platform.展开更多
Controller optimization has mostly been done by minimizing a certain single cost function.In practice,however,engineers must contend with multiple and conflicting considerations,denoted as design indices(DIs)in this p...Controller optimization has mostly been done by minimizing a certain single cost function.In practice,however,engineers must contend with multiple and conflicting considerations,denoted as design indices(DIs)in this paper.Failure to account for such complexity and nuances is detrimental to the applications of any advanced control methods.This paper addresses this challenge heads on,in the context of active disturbance rejection controller(ADRC)and with four competing DIs:stability margins,tracking,disturbance rejection,and noise suppression.To this end,the lower bound for the bandwidth of the extended state observer is first established for guaranteed closed-loop stability.Then,one by one,the mathematical formula is meticulously derived,connecting each DI to the set of controller parameters.To our best knowledge,this has not been done in the context of ADRC.Such formulas allow engineers to see quantitatively how the change of each tuning parameter would impact all of the DIs,thus making the guesswork obsolete.An example is given to show how such analytical methods can help engineers quickly determine controller parameters in a practical scenario.展开更多
This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade ...This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.展开更多
To support the adoption of active disturbance rejeetion control(ADRC)in industrial practice,this article aims at improv-ing both understanding and implementation of ADRC using traditional means,in particular via trans...To support the adoption of active disturbance rejeetion control(ADRC)in industrial practice,this article aims at improv-ing both understanding and implementation of ADRC using traditional means,in particular via transfer functions and a frequency-domain view.First,to enable an immediate comparability with existing classical control solutions,a realizable transfer function implementation of continous-time linear ADRC is introduced.Second,a frequency-domain analysis of ADRC components,performance,parameter sensitivity,and tuning method is performed.Finally,an exact implementation of discrete-time ADRC using transfer functions is introduced for the first time,with special emphasis on practical aspects such as computational fficiency,low parameter footprint.and windup protection.展开更多
In this paper,an overview of several strategies for fault ride-through(FRT)capability improvement of a doubly-fed induction generator(DFIG)-based wind turbine is presented.Uncertainties and parameter variations have a...In this paper,an overview of several strategies for fault ride-through(FRT)capability improvement of a doubly-fed induction generator(DFIG)-based wind turbine is presented.Uncertainties and parameter variations have adverse effects on the performance of these strategies.It is desirable to use a control method that is robust to such distur-bances.Auto disturbance rejection control(ADRC)is one of the most common methods for eliminating the effects of disturbances.To improve the performance of the conventional ADRC,a modified ADRC is introduced that is more robust to disturbances and offers better responses.The non-derivability of the fal function used in the conventional ADRC degrades its efficiency,so the modified ADRC uses alternative functions that are derivable at all points,i.e.,the odd trigonometric and hyperbolic functions(arcsinh,arctan,and tanh).To improve the effciency of the proposed ADRC,fuzzy logic and fractional-order functions are used simultaneously.In fuzzy fractional-order ADRC(FFOADRC),all disturbances are evaluated using a nonlinear fractional-order extended state observer(NFESO).The performance of the suggested structure is investigated in MATLAB/Simulink.The simulation results show that during disturbances such as network voltage sag/swell,using the modified ADRCs leads to smaller fluctuations in stator flux amplitude and DC-link voltage,lower variations in DFIG velocity,and lower total harmonic distortion(THD)of the stator current.This demonstrates the superiority over conventional ADRC and a proportional-integral(PI)controller.Also,by chang-ing the crowbar resistance and using the modified ADRCs,the peak values of the waveforms(torque and currents)can be controlled at the moment of fault occurrence with no significant distortion.展开更多
A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented...A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.展开更多
Disturbance and uncertainty rejection is a key objective in control system design, and active disturbance rejection control(ADRC)exactly provides an effective solution to this issue. To this end, this paper presents a...Disturbance and uncertainty rejection is a key objective in control system design, and active disturbance rejection control(ADRC)exactly provides an effective solution to this issue. To this end, this paper presents a generalized active disturbance rejection controller for a class of nonlinear uncertain systems with linear output. To be specific, a generalized reduced-order extended state observer(ESO) is proposed to reduce phase delay and complexity of the system, which can take full advantage of the system output. Also, this method includes the existing results with fewer assumptions, and can be applied to systems with any order measurable states or multiple states, even linear combination states. Furthermore, the stability of this approach is guaranteed and demonstrated through matrix transformation and Lyapunov method, and design examples and numerical simulations are given to show the effectiveness and practicability of the method.展开更多
The hypersonic vehicle model is characterized by strong coupling,nonlinearity,and acute changes of aerodynamic parameters,which are challenging for control system design.This study investigates a novel compound contro...The hypersonic vehicle model is characterized by strong coupling,nonlinearity,and acute changes of aerodynamic parameters,which are challenging for control system design.This study investigates a novel compound control scheme that combines the advantages of the Fractional-Order Proportional-Integral-Derivative(FOPID)controller and Linear Active Disturbance Rejection Control(LADRC)for reentry flight control of hypersonic vehicles with actuator faults.First,given that the controller has adjustable parameters,the frequency-domain analysis-method-based parameter tuning strategy is utilized for the FOPID controller and LADRC method(FOLADRC).Then,the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed.Finally,the simulation results indicate that the proposed FOLADRC approach has satisfactory performance in terms of rapidity,accuracy,and robustness under the normal operating condition and actuator fault condition.展开更多
In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved e...In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.展开更多
基金supported by the Shaanxi Provincial Key R&D Program, China (No. 2017KW-ZD-05)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JQ5187)the Fundamental Research Funds for the Central Universities,China(Nos.3102017JC06004, 3102017OQD029)
文摘Compared with traditional hydraulic actuators, an Electro-Mechanical Actuator(EMA)is small in size and light in weight, so it has become more widely used. Aerodynamic load on aircraft control surface varies dramatically, and a change of flight environment leads to uncertainties of motor parameters. Therefore, high-dynamic response and strong anti-disturbance capability of an EMA are of great significance for aircraft rudder control and flight attitude adjustment. In order to improve dynamic response and disturbance rejection of an EMA and simplify control parameters tuning, a robust high-dynamic servo system based on Linear Active Disturbance Rejection Control(LADRC) is proposed for an EMA employing a Permanent Magnet Synchronous Motor(PMSM).Firstly, total disturbances of the EMA are analyzed, including parameter uncertainties, load variation, and static friction. A disturbance observer based on a reduced-order Extended State Observer(ESO) is designed to improve the anti-interference ability and dynamic performance. Secondly, the servo control architecture is simplified to a double-loop system, and a composite control of position and speed with acceleration feed-forward is presented to improve the EMA frequency bandwidth.Thirdly, the ideal model of the EMA is transformed into a simple cascade integral form with a disturbance observer, which makes it convenient to analyze and design the controller. Robustness performance comparisons are realized in frequency domain. Finally, simulation and experimental results have verified the effectiveness of the proposed strategy for EMAs.
基金supported by the National Natural Science Foundation of China(61573282)the Foundation of the Education Department of Sichuan Province(16ZA0132)the Foundation of Robot Technology Used for Special Environment,Key Laboratory of Sichuan Province(13zxtk06)
文摘A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quadrotor taking into account aerodynamical effects induced by lateral wind and actuator faults is considered using the Newton-Euler approach. Then,based on active disturbance rejection control(ADRC), the fault tolerant controller is proposed to recover faulty system and reject perturbations. The developed controller takes wind gusts,actuator faults and measurement noises as total perturbations which are estimated by improved extended state observer(ESO)and compensated by nonlinear feedback control law. So, the developed robust fault tolerant controller can successfully accomplish the tracking of the desired output values. Finally, some simulation studies are given to illustrate the effectiveness of fault recovery of the proposed scheme and also its ability to attenuate external disturbances that are introduced from environmental causes such as wind gusts and measurement noises.
基金supported by the National Natural Science Foundation of China(60774088)the National High Technology Research and Development Program of China(863 Program)(2009AA04Z132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090031110029)
文摘Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.
基金supported by Science and Technology Innovation 2030-Key Project of"New Generation Artificial Intelli-gence",China(No.2018AAA0100803)National Natural Science Foundation of China(Nos.U20B2071,91948204,U1913602)Aeronautical Foundation of China(No.20185851022).
文摘In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.
基金supported by the National Natural Science Foundation of China(61973175,61973172)。
文摘In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.
基金supported by the National Key R&D Program of China (No. 2022YFA1004703)the National Natural Science Foundation of China (Nos. 62122083 and 62103014)Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2021003)。
文摘In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensated Acceleration Feedback based Active Disturbance Rejection Control(CAF-ADRC) is established to achieve both desired attitude tracking and load relief performances. In particular, the total disturbance that includes the effects caused by both aerocoefficient perturbations and disturbances is estimated by constructing an Extended State Observer(ESO) to achieve attitude tracking. Furthermore, combined with the normal acceleration due to the engine thrust, the accelerometer measurement is also compensated to enhance the load relief effect.Secondly, the quantitative analysis of ESO and the entire closed-loop system are studied. It can be concluded that the desired attitude tracking and load relief performances can be achieved simultaneously under the proposed approach. Besides, tuning laws of the proposed approach are systematically given, which are divided into ESO, Proportional Derivative(PD) and Compensated Acceleration Feedback(CAF) modules. Moreover, the performances under CAF-ADRC approach can be better than those under CAF based PD(CAF-PD) approach by tuning load relief gain.Finally, the approach presented is applied to a typical control problem of launch vehicles with wind disturbances and parameter uncertainties.
基金This work was supported in part by the JSPS(Japan Society for the Promotion of Science)KAKENHI(20H04566,22H03998)the National Natural Science Foundation of China(61873348)+1 种基金the Natural Science Foundation of Hubei Province,China(2020CFA031)Wuhan Applied Foundational Frontier Project(2020010601012175).
文摘Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金This work was supported by the Science&Technology Research Project in Henan Province of China(No.212102311052)the National Key Research and Development Program of China(No.2016YFB0901405)the National Natural Science Foundation of China(No.61473265).
文摘This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired power plants.The profound interpretation of this paradigm shift,with backward compatibility,is discussed in detail.A few fundamental issues associated with ADRC's applications in thermal processes are discussed,such as implementation,tuning,and the structural changes.Examples and case studies are presented,encompassing coal-fired power plants,gas turbines and nuclear power plants,as well as highlighting results of field applications.Also discussed are future research opportunities brought by ADRC's entry as the baseline control technology in thermal processes.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
文摘In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.
基金This work was supported by the National Key R&D Program of China(No.2018YFA0703800)the National Natural Science Foundation of China(No.U20B2054).
文摘The paper analyzes and compares the phase margins of four active disturbance rejection control(ADRC)designs,which are based on different common-used extended state observers(ESOs)of various orders,for second-order systems.The quantitative results indicate that,besides good dynamic response,ADRC can guarantee enough phase margin.It is also proved that by decreasing the order of ESO,the phase margin can be increased.Furthermore,it is demonstrated that the phase margins of the ADRC-based systems can be almost uninfluenced by the uncertainties of the system parameters.Finally,the theoretical results are verified by both simulations and experiments on a motion control platform.
基金This work was supported by the National Key R&D Program of China(No.2018YFA0703800)the National Natural Science Foundation of China(No.U20B2054).
文摘Controller optimization has mostly been done by minimizing a certain single cost function.In practice,however,engineers must contend with multiple and conflicting considerations,denoted as design indices(DIs)in this paper.Failure to account for such complexity and nuances is detrimental to the applications of any advanced control methods.This paper addresses this challenge heads on,in the context of active disturbance rejection controller(ADRC)and with four competing DIs:stability margins,tracking,disturbance rejection,and noise suppression.To this end,the lower bound for the bandwidth of the extended state observer is first established for guaranteed closed-loop stability.Then,one by one,the mathematical formula is meticulously derived,connecting each DI to the set of controller parameters.To our best knowledge,this has not been done in the context of ADRC.Such formulas allow engineers to see quantitatively how the change of each tuning parameter would impact all of the DIs,thus making the guesswork obsolete.An example is given to show how such analytical methods can help engineers quickly determine controller parameters in a practical scenario.
基金supported by the National Natural Science Foundation of China(61833016,61873295).
文摘This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.
文摘To support the adoption of active disturbance rejeetion control(ADRC)in industrial practice,this article aims at improv-ing both understanding and implementation of ADRC using traditional means,in particular via transfer functions and a frequency-domain view.First,to enable an immediate comparability with existing classical control solutions,a realizable transfer function implementation of continous-time linear ADRC is introduced.Second,a frequency-domain analysis of ADRC components,performance,parameter sensitivity,and tuning method is performed.Finally,an exact implementation of discrete-time ADRC using transfer functions is introduced for the first time,with special emphasis on practical aspects such as computational fficiency,low parameter footprint.and windup protection.
文摘In this paper,an overview of several strategies for fault ride-through(FRT)capability improvement of a doubly-fed induction generator(DFIG)-based wind turbine is presented.Uncertainties and parameter variations have adverse effects on the performance of these strategies.It is desirable to use a control method that is robust to such distur-bances.Auto disturbance rejection control(ADRC)is one of the most common methods for eliminating the effects of disturbances.To improve the performance of the conventional ADRC,a modified ADRC is introduced that is more robust to disturbances and offers better responses.The non-derivability of the fal function used in the conventional ADRC degrades its efficiency,so the modified ADRC uses alternative functions that are derivable at all points,i.e.,the odd trigonometric and hyperbolic functions(arcsinh,arctan,and tanh).To improve the effciency of the proposed ADRC,fuzzy logic and fractional-order functions are used simultaneously.In fuzzy fractional-order ADRC(FFOADRC),all disturbances are evaluated using a nonlinear fractional-order extended state observer(NFESO).The performance of the suggested structure is investigated in MATLAB/Simulink.The simulation results show that during disturbances such as network voltage sag/swell,using the modified ADRCs leads to smaller fluctuations in stator flux amplitude and DC-link voltage,lower variations in DFIG velocity,and lower total harmonic distortion(THD)of the stator current.This demonstrates the superiority over conventional ADRC and a proportional-integral(PI)controller.Also,by chang-ing the crowbar resistance and using the modified ADRCs,the peak values of the waveforms(torque and currents)can be controlled at the moment of fault occurrence with no significant distortion.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51605363)China Postdoctoral Science Foundation(Grant No.2016M590922)Shaanxi Postdoctoral Research Project Funding.
文摘A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.61973175,61973172 and 62073177)the Key Technologies Research and Development Program of Tianjin(Grant No.19JCZDJC32800)Tianjin Research Innovation Project for Postgraduate Students(Grant No.2020YJSZXB02)。
文摘Disturbance and uncertainty rejection is a key objective in control system design, and active disturbance rejection control(ADRC)exactly provides an effective solution to this issue. To this end, this paper presents a generalized active disturbance rejection controller for a class of nonlinear uncertain systems with linear output. To be specific, a generalized reduced-order extended state observer(ESO) is proposed to reduce phase delay and complexity of the system, which can take full advantage of the system output. Also, this method includes the existing results with fewer assumptions, and can be applied to systems with any order measurable states or multiple states, even linear combination states. Furthermore, the stability of this approach is guaranteed and demonstrated through matrix transformation and Lyapunov method, and design examples and numerical simulations are given to show the effectiveness and practicability of the method.
基金supported by the National HighTech Research and Development Program of China(Nos.11100002017115004 and 111GFTQ2018115005)the National Natural Science Foundation of China(Nos.61473015 and 91646108)the Space Science and Technology Foundation of China(No.105HTKG2019115002)。
文摘The hypersonic vehicle model is characterized by strong coupling,nonlinearity,and acute changes of aerodynamic parameters,which are challenging for control system design.This study investigates a novel compound control scheme that combines the advantages of the Fractional-Order Proportional-Integral-Derivative(FOPID)controller and Linear Active Disturbance Rejection Control(LADRC)for reentry flight control of hypersonic vehicles with actuator faults.First,given that the controller has adjustable parameters,the frequency-domain analysis-method-based parameter tuning strategy is utilized for the FOPID controller and LADRC method(FOLADRC).Then,the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed.Finally,the simulation results indicate that the proposed FOLADRC approach has satisfactory performance in terms of rapidity,accuracy,and robustness under the normal operating condition and actuator fault condition.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.