The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the ...The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.展开更多
直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二...直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。展开更多
针对半挂汽车列车在高速变道时因参数不确定性导致的横向失稳、半挂车运动轨迹偏移的问题,提出了基于直接横摆力矩控制(Direct Yaw moment Control,DYC)与主动转向(Active Steering,AS)技术的集成控制策略。以追踪牵引车侧向速度、横摆...针对半挂汽车列车在高速变道时因参数不确定性导致的横向失稳、半挂车运动轨迹偏移的问题,提出了基于直接横摆力矩控制(Direct Yaw moment Control,DYC)与主动转向(Active Steering,AS)技术的集成控制策略。以追踪牵引车侧向速度、横摆角速度和铰接角的参考数值为目标,设计了一种横向稳定性控制系统。在MATLAB/SIMULINK软件中搭建横向稳定性控制系统模型,并进行高速变道工况仿真试验。仿真结果表明:在高速变道工况下,施加横向稳定性控制作用后,半挂汽车列车模型能较好地追踪参考模型的响应且在车辆参数发生变化时仍有良好的追踪效果;相较于未施加横向稳定性控制作用的系统和仅施加了单控制作用的系统,双控制作用下半挂车追踪牵引车运动轨迹的能力更优。证明了设计的控制方法有效,可为提高半挂汽车列车横向稳定性和半挂车追踪牵引车运动轨迹能力方面提供一定参考。展开更多
汽车直接横摆力矩控制(direct yaw moment control,DYC)系统用于有效避免车辆遇到非预计危险时的侧向运动,以保证汽车运行的稳定性和驾驶的安全性。目前,DYC系统大多采用分层结构。文章首先从车辆状态估计与环境感知、直接横摆力矩控制...汽车直接横摆力矩控制(direct yaw moment control,DYC)系统用于有效避免车辆遇到非预计危险时的侧向运动,以保证汽车运行的稳定性和驾驶的安全性。目前,DYC系统大多采用分层结构。文章首先从车辆状态估计与环境感知、直接横摆力矩控制器设计和力矩分配法这3个角度分析了汽车DYC系统架构,接着重点阐述了其对车速、车间距离、路面信息、横摆角速率以及车辆质心侧偏角等状态信息的获取与处理方法;然后介绍了上层控制器中车辆动力学参考模型、控制结构及不同变量控制的设计方法以及下层控制器中车辆横摆力矩的分配方式;最后总结了汽车直接横摆力矩控制系统现存的问题以及将来发展的方向。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51575103,11672127,U1664258)Fundamental Research Funds for the Central Universities of China(Grant No.NT2018002)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2017T100365,2016M601799)the Fundation of Graduate Innovation Center in NUAA(Grant No.k j20180207)
文摘The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.
文摘直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。
文摘针对半挂汽车列车在高速变道时因参数不确定性导致的横向失稳、半挂车运动轨迹偏移的问题,提出了基于直接横摆力矩控制(Direct Yaw moment Control,DYC)与主动转向(Active Steering,AS)技术的集成控制策略。以追踪牵引车侧向速度、横摆角速度和铰接角的参考数值为目标,设计了一种横向稳定性控制系统。在MATLAB/SIMULINK软件中搭建横向稳定性控制系统模型,并进行高速变道工况仿真试验。仿真结果表明:在高速变道工况下,施加横向稳定性控制作用后,半挂汽车列车模型能较好地追踪参考模型的响应且在车辆参数发生变化时仍有良好的追踪效果;相较于未施加横向稳定性控制作用的系统和仅施加了单控制作用的系统,双控制作用下半挂车追踪牵引车运动轨迹的能力更优。证明了设计的控制方法有效,可为提高半挂汽车列车横向稳定性和半挂车追踪牵引车运动轨迹能力方面提供一定参考。
文摘汽车直接横摆力矩控制(direct yaw moment control,DYC)系统用于有效避免车辆遇到非预计危险时的侧向运动,以保证汽车运行的稳定性和驾驶的安全性。目前,DYC系统大多采用分层结构。文章首先从车辆状态估计与环境感知、直接横摆力矩控制器设计和力矩分配法这3个角度分析了汽车DYC系统架构,接着重点阐述了其对车速、车间距离、路面信息、横摆角速率以及车辆质心侧偏角等状态信息的获取与处理方法;然后介绍了上层控制器中车辆动力学参考模型、控制结构及不同变量控制的设计方法以及下层控制器中车辆横摆力矩的分配方式;最后总结了汽车直接横摆力矩控制系统现存的问题以及将来发展的方向。