在处理分析海岸水陆特征时,引入水平集理论对复杂边界纹理特征信息进行提取。首先,对海岸线边界提取的相关研究及水平集理论进行了分析总结;然后,结合区域边界信息及其区域光滑非参数密度估计,引入海岸边界区域特征分割算法,利用多种类...在处理分析海岸水陆特征时,引入水平集理论对复杂边界纹理特征信息进行提取。首先,对海岸线边界提取的相关研究及水平集理论进行了分析总结;然后,结合区域边界信息及其区域光滑非参数密度估计,引入海岸边界区域特征分割算法,利用多种类型的影像对该算法进行了验证;最后,为了说明水平集算法(level set method,LSM)对提取海岸线特征信息的有效性,对LSM算法与梯度下降方法在海岸线特征提取上的效率差异进行了比较。结果表明:LSM对海岸特征复杂纹理和噪声等信息具有一定的鲁棒性,同时对于有效边缘信息具有较强的检测灵敏度,能够迅速、有效地对其边界信息进行特征提取。展开更多
文摘在处理分析海岸水陆特征时,引入水平集理论对复杂边界纹理特征信息进行提取。首先,对海岸线边界提取的相关研究及水平集理论进行了分析总结;然后,结合区域边界信息及其区域光滑非参数密度估计,引入海岸边界区域特征分割算法,利用多种类型的影像对该算法进行了验证;最后,为了说明水平集算法(level set method,LSM)对提取海岸线特征信息的有效性,对LSM算法与梯度下降方法在海岸线特征提取上的效率差异进行了比较。结果表明:LSM对海岸特征复杂纹理和噪声等信息具有一定的鲁棒性,同时对于有效边缘信息具有较强的检测灵敏度,能够迅速、有效地对其边界信息进行特征提取。