配电自动化对配电网供电可靠性的贡献程度有赖于通信方式的选择。为此,提出一种基于连续时间马尔科夫链的配电信息物理系统可靠性评估方法。建立层次化的系统可靠性模型,解析各层子系统的可靠性指标传递过程,利用灵敏度分析来比较不同...配电自动化对配电网供电可靠性的贡献程度有赖于通信方式的选择。为此,提出一种基于连续时间马尔科夫链的配电信息物理系统可靠性评估方法。建立层次化的系统可靠性模型,解析各层子系统的可靠性指标传递过程,利用灵敏度分析来比较不同通信接入技术的场景适用性。最后,以罗伊-比尔顿测试系统(Roy Billton test system,RBTS)母线5为算例对所提方法进行验证,并分析网络时延和误码对供电可靠性的影响。结果表明:基于无线公网的配电自动化,在合适的信噪比条件下可达到应用光纤或电力线载波通信方式的可靠性水平。展开更多
In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using th...In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.展开更多
文摘配电自动化对配电网供电可靠性的贡献程度有赖于通信方式的选择。为此,提出一种基于连续时间马尔科夫链的配电信息物理系统可靠性评估方法。建立层次化的系统可靠性模型,解析各层子系统的可靠性指标传递过程,利用灵敏度分析来比较不同通信接入技术的场景适用性。最后,以罗伊-比尔顿测试系统(Roy Billton test system,RBTS)母线5为算例对所提方法进行验证,并分析网络时延和误码对供电可靠性的影响。结果表明:基于无线公网的配电自动化,在合适的信噪比条件下可达到应用光纤或电力线载波通信方式的可靠性水平。
文摘In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.