期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向视频数据的多模态情感分析
1
作者 武星 殷浩宇 +2 位作者 姚骏峰 李卫民 钱权 《计算机工程》 CAS CSCD 北大核心 2024年第6期218-227,共10页
多模态情感分析旨在从文本、图像和音频数据中提取和整合语义信息,从而识别在线视频中说话者的情感状态。尽管多模态融合方案在此研究领域已取得一定成果,但是已有方法在处理模态间分布差异和关系知识的融合方面仍有欠缺,为此,提出一种... 多模态情感分析旨在从文本、图像和音频数据中提取和整合语义信息,从而识别在线视频中说话者的情感状态。尽管多模态融合方案在此研究领域已取得一定成果,但是已有方法在处理模态间分布差异和关系知识的融合方面仍有欠缺,为此,提出一种多模态情感分析方法。设计一种多模态提示门(MPG)模块,其能够将非语言信息转换为融合文本上下文的提示,利用文本信息对非语言信号的噪声进行过滤,得到包含丰富语义信息的提示,以增强模态间的信息整合。此外,提出一种实例到标签的对比学习框架,在语义层面上区分隐空间中的不同标签以进一步优化模型输出。在3个大规模情感分析数据集上的实验结果表明,该方法的二分类精度相对次优模型提高了约0.7%,三分类精度提高了超过2.5%,达到0.671。该方法能够为将多模态情感分析引入用户画像、视频理解、AI面试等领域提供参考。 展开更多
关键词 多模态情感分析 语义信息 多模态融合 上下文表征 对比学习
下载PDF
古今兼及,源流并重——《中华汉英大词典》多义条目语义和语境信息的表征与理据
2
作者 赵翠莲 潘志高 《辞书研究》 2017年第4期1-9,共9页
文章集中论述《中华汉英大词典》多义条目的语义和语境信息表征,尝试结合现当代词典学理论,从用户认知需求、心理词库表征等视角,探讨编纂过程中所采用的原则和处理方式。将多义条目置于《中华汉英大词典》的框架内,从词义的选取与划分... 文章集中论述《中华汉英大词典》多义条目的语义和语境信息表征,尝试结合现当代词典学理论,从用户认知需求、心理词库表征等视角,探讨编纂过程中所采用的原则和处理方式。将多义条目置于《中华汉英大词典》的框架内,从词义的选取与划分、词性、义项编排及配例等方面,论述编纂过程中遇到的问题及解决这些问题的策略,并从理论层面探讨其理据。 展开更多
关键词 《中华汉英大词典》 多义词 语义表征 语境表征
下载PDF
基于EfficientNetV2和物体上下文表示的胃癌图像分割方法 被引量:1
3
作者 周迪 张自力 +3 位作者 陈佳 胡新荣 何儒汉 张俊 《计算机应用》 CSCD 北大核心 2023年第9期2955-2962,共8页
针对U-Net上采样过程容易丢失细节信息,以及胃癌病理图像数据集普遍偏小,容易出现过拟合的问题,提出一种基于改进U-Net的自动分割胃癌病理图像模型EOU-Net。EOU-Net在U-Net模型的基础上,将EfficientNetV2作为骨干特征提取网络,以增强网... 针对U-Net上采样过程容易丢失细节信息,以及胃癌病理图像数据集普遍偏小,容易出现过拟合的问题,提出一种基于改进U-Net的自动分割胃癌病理图像模型EOU-Net。EOU-Net在U-Net模型的基础上,将EfficientNetV2作为骨干特征提取网络,以增强网络编码器的特征提取能力。在解码阶段,基于物体上下文表示(OCR)探究细胞像素间的关系,并使用改进后的OCR模块解决上采样图像的细节丢失问题;然后,使用验证阶段增强(TTA)后处理对输入图像进行翻转和不同角度旋转后分别预测这些图像,再通过特征融合的方式将多个输入图像预测结果进行合并,进一步优化网络的输出结果,从而有效解决医学数据集较小的问题。在SEED、BOT以及PASCAL VOC 2012数据集上的实验结果表明,与OCRNet相比,EOU-Net的平均交并比(MIoU)分别提高了1.8、0.6以及4.5个百分点。可见EOU-Net能得到更准确的胃癌图像分割结果。 展开更多
关键词 语义分割 U-Net EfficientNetV2 物体上下文表示 胃癌
下载PDF
基于上下文表示的知识追踪方法 被引量:4
4
作者 王文涛 马慧芳 +1 位作者 舒跃育 贺相春 《计算机工程与科学》 CSCD 北大核心 2022年第9期1693-1701,共9页
知识追踪是教育数据挖掘领域中一个十分重要的问题,旨在利用可观测到的学生历史交互数据和习题包含的知识点相关信息来推断学生对知识点的掌握情况。已有方法虽在不同程度上取得了一些进展,但大多忽略了使用知识点表示习题的重要性,并... 知识追踪是教育数据挖掘领域中一个十分重要的问题,旨在利用可观测到的学生历史交互数据和习题包含的知识点相关信息来推断学生对知识点的掌握情况。已有方法虽在不同程度上取得了一些进展,但大多忽略了使用知识点表示习题的重要性,并且对使用诸如学习因素之类的上下文表示知识点的研究也不够充分。针对上述问题,提出基于上下文表示的知识追踪方法KTCR。首先,综合考虑影响学生学习过程的因素,并基于学生响应数据设计了知识点上下文表示方法,从而基于Q矩阵表示知识点上下文;其次,为了实现习题向量的降维,利用融合上下文信息的知识点和学生响应数据对习题向量进行重表示;最后,结合学生历史交互数据,使用长短期记忆网络对学生的知识状态进行估计。在4个真实数据集上的实验表明了本文方法对于习题嵌入表示的合理性,并且能够有效地估计学生的知识状态。 展开更多
关键词 知识追踪 教育数据挖掘 上下文表示 Q矩阵 长短期记忆网络
下载PDF
基于深层语境词表示与自注意力的生物医学事件抽取 被引量:3
5
作者 魏优 刘茂福 胡慧君 《计算机工程与科学》 CSCD 北大核心 2020年第9期1670-1679,共10页
生物医学事件抽取是生物医学文本信息抽取中最重要的、也是最富有挑战性的任务之一,近年来得到了广泛关注。生物医学事件抽取中最重要的2个子任务为触发词识别和事件要素检测。已有的大部分方法将触发词识别作为分类任务,忽略了句子级... 生物医学事件抽取是生物医学文本信息抽取中最重要的、也是最富有挑战性的任务之一,近年来得到了广泛关注。生物医学事件抽取中最重要的2个子任务为触发词识别和事件要素检测。已有的大部分方法将触发词识别作为分类任务,忽略了句子级标签信息。构建基于长短时记忆神经网络与条件随机场的序列标注模型用于触发词识别,分别将组合字符级词表示的静态预训练词向量和基于预训练语言模型的动态语境词表示作为模型输入;同时,针对事件要素检测任务,充分利用实体以及实体类型特征,提出基于自注意力的多分类模型。最终触发词识别F1值为81.65%,整体事件抽取F1值为60.04%,实验结果表明提出的方法对于生物医学事件抽取是有效的。 展开更多
关键词 生物医学事件抽取 序列标注 语境词表示 自注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部