期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SwinEA:融合边缘感知的医学图像分割网络 被引量:2
1
作者 叶晋豫 李娇 +2 位作者 邓红霞 张瑞欣 李海芳 《计算机工程与设计》 北大核心 2024年第4期1149-1156,共8页
基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transfor... 基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transformer融合边缘感知的医学图像分割网络。设计基于上下文金字塔的边缘感知模块,用于融合全局的多尺度的上下文信息,针对边缘和角落等局部特征,利用浅层深度主干的特征产生丰富的边缘特征,因此提出的边缘感知模块可以尽可能多地产生边缘特征。在腹部多器官分割任务和心脏分割数据集的实验结果表明,该方法在各项指标中都有所提高。 展开更多
关键词 医学图像分割 移动窗口变形器 多头自注意力 边缘感知模块 上下文金字塔 多尺度特征 深度学习网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部