Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.Howeve...The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.展开更多
Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges ...Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands.Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content.In this paper,we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks,specifically focusing on the transmission of remote sensing images.Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time,effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion.We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction.To address these challenges,we leverage federated reinforcement learning techniques.Additionally,we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images.Through software-based simulations using a low Earth orbit satellite constellation,we validate the effectiveness of our proposed strategy,achieving a significant 17%reduction in the average delivery delay.This paper offers valuable insights into efficient content delivery in satellite networks,specifically targeting the transmission of remote sensing images,and presents a promising approach to mitigate burst traffic challenges in information-centric environments.展开更多
Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and...Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and corresponding quality evaluation metric,which will significantly impact the design of encoding or decoding within content delivery strategy.To get over this dilemma,we firstly integrate the digital twin into the edge networks to accurately and timely capture Quality-of-Decision(QoD)or Quality-of-Experience(QoE)for the guidance of content delivery.Then,in terms of machinecentric communication,a QoD-driven compression mechanism is designed for video analytics via temporally lightweight frame classification and spatially uneven quality assignment,which can achieve a balance among decision-making,delivered content,and encoding latency.Finally,in terms of user-centric communication,by fully leveraging haptic physical properties and semantic correlations of heterogeneous streams,we develop a QoE-driven video enhancement scheme to supply high data fidelity.Numerical results demonstrate the remarkable performance improvement of massive content delivery.展开更多
The emergence of self-driving technologies implies that a future vehicle will likely become an entertainment center that demands personalized multimedia contents with very high quality. The surge of vehicular content ...The emergence of self-driving technologies implies that a future vehicle will likely become an entertainment center that demands personalized multimedia contents with very high quality. The surge of vehicular content demand brings significant challenges for the fifth generation(5G) cellular communication network. To cope with the challenge of massive content delivery, previous studies suggested that the 5G mobile edge network should be designed to integrate communication, computing, and cache(3C) resources to enable advanced functionalities such as proactive content delivery and in-network caching. However, the fundamental benefits achievable by computing and caching in mobile communications networks are not yet properly understood. This paper proposes a novel theoretical framework to characterize the tradeoff among computing, cache, and communication resources required by the mobile edge network to fulfill the task of content delivery. Analytical and numerical results are obtained to characterize the 3C resource tradeoff curve. These results reveal key insights into the fundamental benefits of computing and caching in vehicular mobile content delivery networks.展开更多
The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.H...The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.However,heterogeneous cache nodes have different communication modes and limited caching capacities.In addition,the high mobility of vehicles renders the more complicated caching environment.Therefore,performing efficient cooperative caching becomes a key issue.In this paper,we propose a cross-tier cooperative caching architecture for all contents,which allows the distributed cache nodes to cooperate.Then,we devise the communication link and content caching model to facilitate timely content delivery.Aiming at minimizing transmission delay and cache cost,an optimization problem is formulated.Furthermore,we use a multi-agent deep reinforcement learning(MADRL)approach to model the decision-making process for caching among heterogeneous cache nodes,where each agent interacts with the environment collectively,receives observations yet a common reward,and learns its own optimal policy.Extensive simulations validate that the MADRL approach can enhance hit ratio while reducing transmission delay and cache cost.展开更多
With the development of astronautic technology, communication satellites now have a tremendous gain in both quantity and quality, and have already shown their capability on multi-functional converged communication oth...With the development of astronautic technology, communication satellites now have a tremendous gain in both quantity and quality, and have already shown their capability on multi-functional converged communication other than telecommunication. Under this circumstance, increasing the transmission efficiency of satellite communication network becomes a top priority. In this paper, we focus on content delivery service on satellite networks, where each ground station may have prefetched some file fragments. We cast this problem into a coded caching framework so as to exploit the coded multicast gain for minimizing the satellite communication load. We first propose an optimization-based coded multicast scheme by considering the special property that the satellite network topology is predictable and timevariant. Then, a greedy based fast algorithm is proposed, which can tremendously reduce the computation complexity with a small loss in optimality. Simulation experiments conducted on two Walker constellation satellite networks show that our proposed coded multicast method can efficiently reduce the communication load of satellite networks.展开更多
The COVID-19 pandemic forced many universities around the world to move their educational activities onto online platforms.We conducted a survey in which asking undergraduates at a Chinese university how they felt abo...The COVID-19 pandemic forced many universities around the world to move their educational activities onto online platforms.We conducted a survey in which asking undergraduates at a Chinese university how they felt about different aspects of online education during the pandemic.We received responses from 1,088 students.A majority of the students(67.9%)thought that physical classroom is better than online education and MOOCs.The students believed that teachers have improved their ability to teach online since the pandemic(67.3%)and online teaching is a suitable option in the current situation(65.8%).The students expressed satisfaction with the online educational resources and teachers’flexible use of online tools.However,the students felt that online education is stressful and affecting their health and social life.The pandemic has led to widespread use of online education,and we hope that online education can be better in the future.展开更多
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
基金supported by the National Key Research and Development Program of China under Grant No.2019YFB1802800the National Natural Science Foundation of China under Grant No.62002055,62032013,61872073,62202247.
文摘The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.
基金Project supported by the National Natural Science Foundation of China(No.U21A20451)。
文摘Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands.Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content.In this paper,we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks,specifically focusing on the transmission of remote sensing images.Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time,effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion.We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction.To address these challenges,we leverage federated reinforcement learning techniques.Additionally,we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images.Through software-based simulations using a low Earth orbit satellite constellation,we validate the effectiveness of our proposed strategy,achieving a significant 17%reduction in the average delivery delay.This paper offers valuable insights into efficient content delivery in satellite networks,specifically targeting the transmission of remote sensing images,and presents a promising approach to mitigate burst traffic challenges in information-centric environments.
基金partly supported by the National Natural Science Foundation of China (Grants No.62231017 and No.62071254)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and corresponding quality evaluation metric,which will significantly impact the design of encoding or decoding within content delivery strategy.To get over this dilemma,we firstly integrate the digital twin into the edge networks to accurately and timely capture Quality-of-Decision(QoD)or Quality-of-Experience(QoE)for the guidance of content delivery.Then,in terms of machinecentric communication,a QoD-driven compression mechanism is designed for video analytics via temporally lightweight frame classification and spatially uneven quality assignment,which can achieve a balance among decision-making,delivered content,and encoding latency.Finally,in terms of user-centric communication,by fully leveraging haptic physical properties and semantic correlations of heterogeneous streams,we develop a QoE-driven video enhancement scheme to supply high data fidelity.Numerical results demonstrate the remarkable performance improvement of massive content delivery.
基金the support from the Natural Science Foundation of China (Grant No.61571378)
文摘The emergence of self-driving technologies implies that a future vehicle will likely become an entertainment center that demands personalized multimedia contents with very high quality. The surge of vehicular content demand brings significant challenges for the fifth generation(5G) cellular communication network. To cope with the challenge of massive content delivery, previous studies suggested that the 5G mobile edge network should be designed to integrate communication, computing, and cache(3C) resources to enable advanced functionalities such as proactive content delivery and in-network caching. However, the fundamental benefits achievable by computing and caching in mobile communications networks are not yet properly understood. This paper proposes a novel theoretical framework to characterize the tradeoff among computing, cache, and communication resources required by the mobile edge network to fulfill the task of content delivery. Analytical and numerical results are obtained to characterize the 3C resource tradeoff curve. These results reveal key insights into the fundamental benefits of computing and caching in vehicular mobile content delivery networks.
基金supported by the National Natural Science Foundation of China(62231020,62101401)the Youth Innovation Team of Shaanxi Universities。
文摘The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.However,heterogeneous cache nodes have different communication modes and limited caching capacities.In addition,the high mobility of vehicles renders the more complicated caching environment.Therefore,performing efficient cooperative caching becomes a key issue.In this paper,we propose a cross-tier cooperative caching architecture for all contents,which allows the distributed cache nodes to cooperate.Then,we devise the communication link and content caching model to facilitate timely content delivery.Aiming at minimizing transmission delay and cache cost,an optimization problem is formulated.Furthermore,we use a multi-agent deep reinforcement learning(MADRL)approach to model the decision-making process for caching among heterogeneous cache nodes,where each agent interacts with the environment collectively,receives observations yet a common reward,and learns its own optimal policy.Extensive simulations validate that the MADRL approach can enhance hit ratio while reducing transmission delay and cache cost.
基金supported by the National Natural Science Foundation of China under Grants 61941106,61901261,12031011,and 62071026。
文摘With the development of astronautic technology, communication satellites now have a tremendous gain in both quantity and quality, and have already shown their capability on multi-functional converged communication other than telecommunication. Under this circumstance, increasing the transmission efficiency of satellite communication network becomes a top priority. In this paper, we focus on content delivery service on satellite networks, where each ground station may have prefetched some file fragments. We cast this problem into a coded caching framework so as to exploit the coded multicast gain for minimizing the satellite communication load. We first propose an optimization-based coded multicast scheme by considering the special property that the satellite network topology is predictable and timevariant. Then, a greedy based fast algorithm is proposed, which can tremendously reduce the computation complexity with a small loss in optimality. Simulation experiments conducted on two Walker constellation satellite networks show that our proposed coded multicast method can efficiently reduce the communication load of satellite networks.
文摘The COVID-19 pandemic forced many universities around the world to move their educational activities onto online platforms.We conducted a survey in which asking undergraduates at a Chinese university how they felt about different aspects of online education during the pandemic.We received responses from 1,088 students.A majority of the students(67.9%)thought that physical classroom is better than online education and MOOCs.The students believed that teachers have improved their ability to teach online since the pandemic(67.3%)and online teaching is a suitable option in the current situation(65.8%).The students expressed satisfaction with the online educational resources and teachers’flexible use of online tools.However,the students felt that online education is stressful and affecting their health and social life.The pandemic has led to widespread use of online education,and we hope that online education can be better in the future.