On March 11,2011,a large earthquake and subsequent tsunami near the east coast of Japan destroyed the Fukushima Daiichi nuclear power plant(FD-NPP),causing a massive release of nuclear contaminants.In this paper,a Pac...On March 11,2011,a large earthquake and subsequent tsunami near the east coast of Japan destroyed the Fukushima Daiichi nuclear power plant(FD-NPP),causing a massive release of nuclear contaminants.In this paper,a Pacific basin-wide physical dispersion model is developed and used to investigate the transport of nuclear contaminants.The Pacific circulation model,based on the Regional Ocean Modeling System(ROMS),is forced with air-sea flux climatology derived from COADS(the Comprehensive Ocean-Atmosphere Data Set).It is shown that ocean current dominates nuclear contaminant transport.Following the Kuroshio Extension and North Pacific Current,nuclear contaminants at the surface will move eastward in the Pacific as far as 140°W,thereafter dividing into two branches.For the south branch,nuclear contaminants will be transported westward by the equatorial current,and can reach the Philippines after 10 years' time.In contrast,the north branch will arrive at the American west coast and then migrate to the Bering Sea.At 200 m water depth,part of the nuclear materials will move southwestward along with deep ocean circulation,which could potentially reach the east coast of Taiwan.The other part will move to the west coast of America and separate into two branches.One will move northward along the west coast of Alaska,while the other will travel southward to the Hawaiian Islands.The transport of radiation contaminants below 500 m is slow,and will primarily remain in the central Pacific.The physical dispersion model results show that high concentrations of the radioactive isotope cesium-137(137 Cs) will move eastward and reach the central Pacific and west coast of North America in two and eight years,respectively.The sea areas influenced by the nuclear contaminants continue to expand,while peak concentrations decrease in the North Pacific.展开更多
Poly-and perfluoroalkyl substances(PFASs)are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife.Previous reviews by Butt et al.and Let...Poly-and perfluoroalkyl substances(PFASs)are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife.Previous reviews by Butt et al.and Letcher et al.have covered studies on levels and trends of PFASs in the Arctic that were available to 2009.The purpose of this review is to focus on more recent work,generally published between 2009 and 2018,with emphasis on PFASs of emerging concern such as perfluoroalkyl carboxylates(PFCAs)and short-chain perfluoroalkyl sulfonates(PFSAs)and their precursors.Atmospheric measurements over the period 2006e2014 have shown that fluorotelomer alcohols(FTOHs)as well as perfluorobutanoic acid(PFBA)and perfluoroctanoic acid(PFOA)are the most prominent PFASs in the arctic atmosphere,all with increasing concentrations at Alert although PFOA concentrations declined at the Zeppelin Station(Svalbard).Results from ice cores show generally increasing deposition of PFCAs on the Devon Ice cap in the Canadian arctic while declining fluxes were found in a glacier on Svalbard.An extensive dataset exists for long-term trends of long-chain PFCAs that have been reported in Arctic biota with some datasets including archived samples from the 1970s and 1980s.Trends in PFCAs over time vary among the same species across the North American Arctic,East and West Greenland,and Svalbard.Most long term time series show a decline from higher concentrations in the early 2000s.However there have been recent(post 2010)increasing trends of PFCAs in ringed seals in the Canadian Arctic,East Greenland polar bears and in arctic foxes in Svalbard.Annual biological sampling is helping to determine these relatively short term changes.Rising levels of some PFCAs have been explained by continued emissions of long-chain PFCAs and/or their precursors and inflows to the Arctic Ocean,especially from the North Atlantic.While the effectiveness of biological sampling for temporal trends in long-chain PFCAs and PFSAs has been demonstrated,this does not appl展开更多
Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the ...Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the most frequently and abundantly detected PBDE congeners in the environment,has recently been designated as a new pollutant subject to rigorous control in China.Colloid-facilitated transport is a key mechanism for the release of PBDEs from surface soils and their migration in the aquifer,but the effects of hydrodynamic conditions,particularly transient flow,on colloid-facilitated release of PBDEs are not well understood.Herein,we examined the effects of typical transient flow conditions on the release characteristics of colloids and BDE-209 from surface soil collected from an e-waste recycling site by undisturbed soil core leaching tests involving multiple dry–wet cycles(with different drying durations)and freeze–thaw cycles.We observed significant positive correlations between BDE-209 and colloid concentrations in the leachate in both the dry–wet and freeze–thaw leaching experiments,highlighting the critical role of colloids in facilitating BDE-209 release.However,colloids mobilized during the dry–wet cycles contained higher contents of BDE-209 than those in the freeze–thaw cycle tests,and the difference was primarily due to the more intensive disintegration of soil aggregates and elution of newly formed inorganic colloidal particles(mainly primary silicate minerals such as quartz and albite)with low BDE-209 content during the freeze–thaw process.These findings underscore the necessity of considering transient flow conditions when assessing the fate and risks of PBDEs at contaminated sites.展开更多
Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and h...Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale.The spatiotemporal dynamics of PFASs across various media remain largely unknown.Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model.This model incorporates hydrological,hydrodynamic,and water quality processes to quantify the distributions of total PFASs,including the major components perfluorooctanoate(PFOA)and perfluorooctane sulfonate(PFOS),across water,particulate matter,and sediments within the reservoir.Our results,validated against four years of field measurements with most relative average deviations below 40%,demonstrate that this integrated approach effectively characterizes the occurrence,sources,sinks,and trends of PFASs.The majority of PFASs are found in the dissolved phase(>95%),followed by fractions sorbed to organic particles like detritus(1.0-3.5%)and phytoplankton(1-2%).We also assess the potential risks in both the water column and sediments of the reservoir.The risk quotients for PFOS and PFOA are<0.32 and<0.00016,respectively,indicating an acceptable risk level for PFASs in this water body.The reservoir also exhibits substantial buffering capacity,even with a tenfold increase in external loading,particularly in managing the risks associated with PFOA compared to PFOS.This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.展开更多
Hexachlorobutadiene(HCBD)is a halogenated hydrocarbon that is primarily produced as an unintentional byproduct in the manufacture of chlorinated solvents.Similarities between HCBD and other persistent organic pollutan...Hexachlorobutadiene(HCBD)is a halogenated hydrocarbon that is primarily produced as an unintentional byproduct in the manufacture of chlorinated solvents.Similarities between HCBD and other persistent organic pollutants(POPs)led to its listing in 2015 for global regulation under the Stockholm Convention on POPs.HCBD's toxicity and propensity for long-range transport means there is special concern for its potential impacts on Arctic ecosystems.The present review comprehensively summarizes all available information of the occurrence of HCBD in the Arctic environment,including its atmospheric,terrestrial,freshwater and marine ecosystems and biota.Overall,reports of HCBD in Arctic environmental media are scarce.HCBD has been measured in Arctic air collected from monitoring stations in Finland and Canada,yet there is a dearth of data for other abiotic matrices(i.e.soils,sediments,glacier ice,freshwaters and seawater).Low HCBD concentrations have been measured in Arctic terrestrial and marine biota,which is consistent with laboratory studies that indicate that HCBD has the potential to bioaccumulate,but not to biomagnify.Available data for Arctic biota suggest that terrestrial birds and mammals and seabirds,have comparatively higher HCBD concentrations than fish and marine mammals,warranting additional research.Although spatial and temporal trends in HCBD concentrations in the Arctic are currently limited,future monitoring of HCBD in the Arctic will be important for assessing the impact of global regulations newly-imposed by the Stockholm Convention on POPs.展开更多
The Yucatan Peninsula’s groundwater is experiencing increases in degradation due to swelling population and tourism;yet little is known about sources and transport of contaminants in drinking water supplies. The kars...The Yucatan Peninsula’s groundwater is experiencing increases in degradation due to swelling population and tourism;yet little is known about sources and transport of contaminants in drinking water supplies. The karst allows for rapid transport of microbial and chemical contaminants to the subsurface, resulting in significantly increased potential for pollution of groundwater. The objective of this research is to determine the occurrence, source, and extent of fecal contamination in the Tulum region of the Peninsula. A multi-analytical approach was undertaken in impacted and unimpacted groundwater locations;measurements included physicochemical parameters, total coliform and E. coli, Bacteroides (human vs total) and caffeine. The results indicate a variation in geochemistry from impacted to protected sites. The total coliform and E. coli show fecal contamination is wide spread. However, the presence of human Bacteriodes and caffeine in the water in the Tulum well field indicates that the recent human activities next to the well field are impacting the drinking water supply. This project is an assessment of the area’s current water quality conditions and the probable impact that the aforementioned growth would have on the area’s water supply. By applying multiple source parameter measurements, including molecular microbiology and chemical indicators it was confirmed the extent of fecal contamination of human origin covered the entire sampling region.展开更多
Rapid development of pharmaceuticals outpaces the efforts to regulate and monitor their trace concentrations in the environment.This emerging issue can only be solved through field studies,solid fate and transport mod...Rapid development of pharmaceuticals outpaces the efforts to regulate and monitor their trace concentrations in the environment.This emerging issue can only be solved through field studies,solid fate and transport models,and adequate risk assessment of the concerned contaminants.This approach requires the availability of toxicological information about the contaminants along with an understanding of their full potential in different media of the environment.This review paper focuses on commonly used seven pharmaceutical families across the globe:antacids,antibiotics,antidepressants,antiepileptics,beta blockers,lipid lowering drugs,and nonsteroidal anti-inflammatory drugs.Within each family,pharmaceuticals which are widely prescribed,studied,and frequently detected in environment were selected.The concentration levels in the environment,updated physicochemical properties,main natural removal mechanism,and ecological risk assessment towards the receptors of those pharmaceuticals in aquatic and terrestrial systems were analyzed.The following results were observed in the literature:1)removal of the pharmaceuticals from wastewater treatment plants is reduced when the dissolved organic matter present;2)many studies have cited older physicochemical properties of the concerned pharmaceuticals assuming relative conditions in their studies which can affect the accuracy of a model;3)the number of studies are very limited for fate and transport in the soil;and 4)there is lack of cumulative risk assessment of mixed pharmaceutical substances.Therefore,this review will provide modeler with updated physiochemical properties;it will guide researchers to focus on removal of those contaminants at different lifecycle stages;and it will provide guidance to policy makers to develop effective policies and regulations.展开更多
Global regulations and many regional and national controls restrict the use of substances that exhibit the potential for environmental persistence and long-range transport.Nevertheless,many current-use pesticides(CUPs...Global regulations and many regional and national controls restrict the use of substances that exhibit the potential for environmental persistence and long-range transport.Nevertheless,many current-use pesticides(CUPs)continue to be newly discovered in remote regions,including the Arctic.The present review serves as an update,summarizing newly available information for CUPs in the Arctic environment and biota published from 2010 to 2018.Since 2010,at least seven new CUPs have been measured in Arctic media:2-methyl-4-chlorophenoxyacetic acid(MCPA),metribuzin,pendimethalin,phosalone,quizalofop-ethyl,tefluthrin and triallate.Considering the large number of pesticides in current use,the number measured in the Arctic is very limited,however,modelling studies have identified additional CUPs as potential Arctic contaminants that have yet to be investigated in the Arctic.Owing to their recent detection,reports of CUPs in the Arctic are limited,but growing.CUPs have been reported in a wide range of abiotic Arctic matrices,including air,snow,ice,freshwater and seawater,indicating their capacity for long-range atmospheric transport,however,concentrations are generally low in comparison to legacy pesticides and other persistent organic pollutants(POPs).Recent food-web studies indicate CUPs can enter Arctic terrestrial and marine food chains,however,in contrast to POPs,the highest concentrations of many CUPs were found in lower trophic-level organisms,and the lowest concentrations detected in animals at the highest trophic levels(i.e,ringed seals,polar bear,caribou,and wolves)indicating significant trophic dilution.The detection of CUPs in the remote Arctic ecosystem reinforces the need for continued monitoring of both known and potential Arctic pollutants to prevent impacts on human and environmental health as the global arsenal of pesticides used in agriculture continuously changes.展开更多
基金supported by the Major State Basic Research Development Program of China (2011CB403600)the National Natural Science Foundation of China (40531006,41076011 and 41106024)
文摘On March 11,2011,a large earthquake and subsequent tsunami near the east coast of Japan destroyed the Fukushima Daiichi nuclear power plant(FD-NPP),causing a massive release of nuclear contaminants.In this paper,a Pacific basin-wide physical dispersion model is developed and used to investigate the transport of nuclear contaminants.The Pacific circulation model,based on the Regional Ocean Modeling System(ROMS),is forced with air-sea flux climatology derived from COADS(the Comprehensive Ocean-Atmosphere Data Set).It is shown that ocean current dominates nuclear contaminant transport.Following the Kuroshio Extension and North Pacific Current,nuclear contaminants at the surface will move eastward in the Pacific as far as 140°W,thereafter dividing into two branches.For the south branch,nuclear contaminants will be transported westward by the equatorial current,and can reach the Philippines after 10 years' time.In contrast,the north branch will arrive at the American west coast and then migrate to the Bering Sea.At 200 m water depth,part of the nuclear materials will move southwestward along with deep ocean circulation,which could potentially reach the east coast of Taiwan.The other part will move to the west coast of America and separate into two branches.One will move northward along the west coast of Alaska,while the other will travel southward to the Hawaiian Islands.The transport of radiation contaminants below 500 m is slow,and will primarily remain in the central Pacific.The physical dispersion model results show that high concentrations of the radioactive isotope cesium-137(137 Cs) will move eastward and reach the central Pacific and west coast of North America in two and eight years,respectively.The sea areas influenced by the nuclear contaminants continue to expand,while peak concentrations decrease in the North Pacific.
基金We thank the Arctic Monitoring and Assessment Programme(AMAP)and the national programs in the circumpolar countries for their funding and support of this work.We are especially grateful to Simon Wilson,Cynthia de Wit,and the reviewers that read the chapter on PFASs in the original AMAP assessment.We are thankful to the northern communities in circumpolar regions for their cooperation and collection of biological samples that yielded the data reviewed here.DCGM was supported by the King Carl XVI Gustaf Professorship in Environmental Science at the Dept of Environmental Science and Analytical Chemistry,Stockholm University during 2018-19.
文摘Poly-and perfluoroalkyl substances(PFASs)are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife.Previous reviews by Butt et al.and Letcher et al.have covered studies on levels and trends of PFASs in the Arctic that were available to 2009.The purpose of this review is to focus on more recent work,generally published between 2009 and 2018,with emphasis on PFASs of emerging concern such as perfluoroalkyl carboxylates(PFCAs)and short-chain perfluoroalkyl sulfonates(PFSAs)and their precursors.Atmospheric measurements over the period 2006e2014 have shown that fluorotelomer alcohols(FTOHs)as well as perfluorobutanoic acid(PFBA)and perfluoroctanoic acid(PFOA)are the most prominent PFASs in the arctic atmosphere,all with increasing concentrations at Alert although PFOA concentrations declined at the Zeppelin Station(Svalbard).Results from ice cores show generally increasing deposition of PFCAs on the Devon Ice cap in the Canadian arctic while declining fluxes were found in a glacier on Svalbard.An extensive dataset exists for long-term trends of long-chain PFCAs that have been reported in Arctic biota with some datasets including archived samples from the 1970s and 1980s.Trends in PFCAs over time vary among the same species across the North American Arctic,East and West Greenland,and Svalbard.Most long term time series show a decline from higher concentrations in the early 2000s.However there have been recent(post 2010)increasing trends of PFCAs in ringed seals in the Canadian Arctic,East Greenland polar bears and in arctic foxes in Svalbard.Annual biological sampling is helping to determine these relatively short term changes.Rising levels of some PFCAs have been explained by continued emissions of long-chain PFCAs and/or their precursors and inflows to the Arctic Ocean,especially from the North Atlantic.While the effectiveness of biological sampling for temporal trends in long-chain PFCAs and PFSAs has been demonstrated,this does not appl
基金supported by the National Key Research and Development Program of China(2019YFC1804202)the National Natural Science Foundation of China(22276101 and 22020102004)+1 种基金the Fundamental Research Funds for the Central Universities(63233056)the Ministry of Education of China(T2017002).
文摘Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the most frequently and abundantly detected PBDE congeners in the environment,has recently been designated as a new pollutant subject to rigorous control in China.Colloid-facilitated transport is a key mechanism for the release of PBDEs from surface soils and their migration in the aquifer,but the effects of hydrodynamic conditions,particularly transient flow,on colloid-facilitated release of PBDEs are not well understood.Herein,we examined the effects of typical transient flow conditions on the release characteristics of colloids and BDE-209 from surface soil collected from an e-waste recycling site by undisturbed soil core leaching tests involving multiple dry–wet cycles(with different drying durations)and freeze–thaw cycles.We observed significant positive correlations between BDE-209 and colloid concentrations in the leachate in both the dry–wet and freeze–thaw leaching experiments,highlighting the critical role of colloids in facilitating BDE-209 release.However,colloids mobilized during the dry–wet cycles contained higher contents of BDE-209 than those in the freeze–thaw cycle tests,and the difference was primarily due to the more intensive disintegration of soil aggregates and elution of newly formed inorganic colloidal particles(mainly primary silicate minerals such as quartz and albite)with low BDE-209 content during the freeze–thaw process.These findings underscore the necessity of considering transient flow conditions when assessing the fate and risks of PBDEs at contaminated sites.
基金National Natural Science Foundation of China(No.42077356 and 42361144719)seventh batch Young Elite Scientists Sponsorship Program by Jilin Province(QT202330).
文摘Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale.The spatiotemporal dynamics of PFASs across various media remain largely unknown.Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model.This model incorporates hydrological,hydrodynamic,and water quality processes to quantify the distributions of total PFASs,including the major components perfluorooctanoate(PFOA)and perfluorooctane sulfonate(PFOS),across water,particulate matter,and sediments within the reservoir.Our results,validated against four years of field measurements with most relative average deviations below 40%,demonstrate that this integrated approach effectively characterizes the occurrence,sources,sinks,and trends of PFASs.The majority of PFASs are found in the dissolved phase(>95%),followed by fractions sorbed to organic particles like detritus(1.0-3.5%)and phytoplankton(1-2%).We also assess the potential risks in both the water column and sediments of the reservoir.The risk quotients for PFOS and PFOA are<0.32 and<0.00016,respectively,indicating an acceptable risk level for PFASs in this water body.The reservoir also exhibits substantial buffering capacity,even with a tenfold increase in external loading,particularly in managing the risks associated with PFOA compared to PFOS.This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.
基金We thank the Arctic Monitoring and Assessment Programme(AMAP)and the national programs in the circumpolar countries for their funding and support of this work.We are especially grateful to Simon Wilson,Cynthia de Wit,and the numerous reviewers that were a part of this process.We are thankful to the northern communities in circumpolar regions for their cooperation and collection of biological samples that yielded much of the data reviewed here.Katrin Vorkamp's contribution to the AMAP assessment report was supported by the Danish Environmental Protection Agency,under the Cooperation for Environment in the Arctic(DANCEA),grants no.MST-112-191 and MST-113-00082.We also thank Canada's Northern Contaminants Program(NCP)for providing air data from the station of Alert.Unpublished results were provided by D.C.G.Muir,M.Evans,and H.Hung(Environment and Climate Change Canada),and K.Vorkamp and F.Riget(Aarhus University,Denmark).
文摘Hexachlorobutadiene(HCBD)is a halogenated hydrocarbon that is primarily produced as an unintentional byproduct in the manufacture of chlorinated solvents.Similarities between HCBD and other persistent organic pollutants(POPs)led to its listing in 2015 for global regulation under the Stockholm Convention on POPs.HCBD's toxicity and propensity for long-range transport means there is special concern for its potential impacts on Arctic ecosystems.The present review comprehensively summarizes all available information of the occurrence of HCBD in the Arctic environment,including its atmospheric,terrestrial,freshwater and marine ecosystems and biota.Overall,reports of HCBD in Arctic environmental media are scarce.HCBD has been measured in Arctic air collected from monitoring stations in Finland and Canada,yet there is a dearth of data for other abiotic matrices(i.e.soils,sediments,glacier ice,freshwaters and seawater).Low HCBD concentrations have been measured in Arctic terrestrial and marine biota,which is consistent with laboratory studies that indicate that HCBD has the potential to bioaccumulate,but not to biomagnify.Available data for Arctic biota suggest that terrestrial birds and mammals and seabirds,have comparatively higher HCBD concentrations than fish and marine mammals,warranting additional research.Although spatial and temporal trends in HCBD concentrations in the Arctic are currently limited,future monitoring of HCBD in the Arctic will be important for assessing the impact of global regulations newly-imposed by the Stockholm Convention on POPs.
文摘The Yucatan Peninsula’s groundwater is experiencing increases in degradation due to swelling population and tourism;yet little is known about sources and transport of contaminants in drinking water supplies. The karst allows for rapid transport of microbial and chemical contaminants to the subsurface, resulting in significantly increased potential for pollution of groundwater. The objective of this research is to determine the occurrence, source, and extent of fecal contamination in the Tulum region of the Peninsula. A multi-analytical approach was undertaken in impacted and unimpacted groundwater locations;measurements included physicochemical parameters, total coliform and E. coli, Bacteroides (human vs total) and caffeine. The results indicate a variation in geochemistry from impacted to protected sites. The total coliform and E. coli show fecal contamination is wide spread. However, the presence of human Bacteriodes and caffeine in the water in the Tulum well field indicates that the recent human activities next to the well field are impacting the drinking water supply. This project is an assessment of the area’s current water quality conditions and the probable impact that the aforementioned growth would have on the area’s water supply. By applying multiple source parameter measurements, including molecular microbiology and chemical indicators it was confirmed the extent of fecal contamination of human origin covered the entire sampling region.
文摘Rapid development of pharmaceuticals outpaces the efforts to regulate and monitor their trace concentrations in the environment.This emerging issue can only be solved through field studies,solid fate and transport models,and adequate risk assessment of the concerned contaminants.This approach requires the availability of toxicological information about the contaminants along with an understanding of their full potential in different media of the environment.This review paper focuses on commonly used seven pharmaceutical families across the globe:antacids,antibiotics,antidepressants,antiepileptics,beta blockers,lipid lowering drugs,and nonsteroidal anti-inflammatory drugs.Within each family,pharmaceuticals which are widely prescribed,studied,and frequently detected in environment were selected.The concentration levels in the environment,updated physicochemical properties,main natural removal mechanism,and ecological risk assessment towards the receptors of those pharmaceuticals in aquatic and terrestrial systems were analyzed.The following results were observed in the literature:1)removal of the pharmaceuticals from wastewater treatment plants is reduced when the dissolved organic matter present;2)many studies have cited older physicochemical properties of the concerned pharmaceuticals assuming relative conditions in their studies which can affect the accuracy of a model;3)the number of studies are very limited for fate and transport in the soil;and 4)there is lack of cumulative risk assessment of mixed pharmaceutical substances.Therefore,this review will provide modeler with updated physiochemical properties;it will guide researchers to focus on removal of those contaminants at different lifecycle stages;and it will provide guidance to policy makers to develop effective policies and regulations.
基金We thank the Arctic Monitoring and Assessment Programme(AMAP)and the national programs in circumpolar countries for their funding and support of this work.We are especially grateful to Simon Wilson,Cynthia de Wit,and the numerous reviewers that were a part of this process.We are thankful to the northern communities in circumpolar regions for their cooperation and collection of biological samples that yielded much of the data reviewed here.We also thank Canada's Northern Contaminants Program(NCP)for providing air data from the station of Alert.The Danish contribution to the AMAP assessment report(Katrin Vorkamp and Frank Riget)was supported by the Danish Environmental Protection Agency,under the Cooperation for Environment in the Arctic(DANCEA),grants no.MST-112-191 and MST-113-00082.
文摘Global regulations and many regional and national controls restrict the use of substances that exhibit the potential for environmental persistence and long-range transport.Nevertheless,many current-use pesticides(CUPs)continue to be newly discovered in remote regions,including the Arctic.The present review serves as an update,summarizing newly available information for CUPs in the Arctic environment and biota published from 2010 to 2018.Since 2010,at least seven new CUPs have been measured in Arctic media:2-methyl-4-chlorophenoxyacetic acid(MCPA),metribuzin,pendimethalin,phosalone,quizalofop-ethyl,tefluthrin and triallate.Considering the large number of pesticides in current use,the number measured in the Arctic is very limited,however,modelling studies have identified additional CUPs as potential Arctic contaminants that have yet to be investigated in the Arctic.Owing to their recent detection,reports of CUPs in the Arctic are limited,but growing.CUPs have been reported in a wide range of abiotic Arctic matrices,including air,snow,ice,freshwater and seawater,indicating their capacity for long-range atmospheric transport,however,concentrations are generally low in comparison to legacy pesticides and other persistent organic pollutants(POPs).Recent food-web studies indicate CUPs can enter Arctic terrestrial and marine food chains,however,in contrast to POPs,the highest concentrations of many CUPs were found in lower trophic-level organisms,and the lowest concentrations detected in animals at the highest trophic levels(i.e,ringed seals,polar bear,caribou,and wolves)indicating significant trophic dilution.The detection of CUPs in the remote Arctic ecosystem reinforces the need for continued monitoring of both known and potential Arctic pollutants to prevent impacts on human and environmental health as the global arsenal of pesticides used in agriculture continuously changes.