Multi-quasiparticle states and rotational bands in neutron-rich erbium isotopes have been investigated by the configuration- constrained pairing-deformation-frequency self-consistent total-Routhian-surface (TRS) met...Multi-quasiparticle states and rotational bands in neutron-rich erbium isotopes have been investigated by the configuration- constrained pairing-deformation-frequency self-consistent total-Routhian-surface (TRS) method with particle-number-conserved pairing. Specifically, the recently observed Kπ = 4- bands in 168,170,172Er have been found to experience a configuration change in our calculation. Some other multi-quasiparticle states with uncertain configuration assignments have been reinvestigated by calculating their collective rotations. The configuration-constrained TRS calculation can reproduce experimental data consistently.展开更多
The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance ...The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..展开更多
The collision-free straight-line following of an unmanned surface vehicle(USV)moving in a constrained water region subject to stationary and moving obstacles is addressed in this paper.USV systems are normally subject...The collision-free straight-line following of an unmanned surface vehicle(USV)moving in a constrained water region subject to stationary and moving obstacles is addressed in this paper.USV systems are normally subjected to surge velocity constraints,yaw rate constraints,and unknown ocean currents.Herein,a safety-certificated line-of-sight(LOS)guidance method is proposed to achieve a constrained straight-line following task.First,an antidisturbance LOS guidance law is designed based on the LOS guidance scheme and an extended state observer.Furthermore,collision avoidance with waterway boundaries and stationary/moving obstacles is encoded in control barrier functions,utilizing which the safety constraints are transformed into input constraints.Finally,safety-certificated guidance signals are obtained by solving a quadratic programming problem subject to input constraints.Using the proposed safety-certified LOS guidance method,the USV can accomplish a straight-line following task with guaranteed input-to-state safety.Simulation results substantiate the efficacy of the proposed safety-certificated LOS guidance method for the straight-line following of USVs moving in a constrained water region subject to unknown ocean currents.展开更多
Accurate acceleration acquisition is a critical issue in the robotic exoskeleton system,but it is difficult to directly obtain the acceleration via the existing sensing systems.The existing algorithm-based acceleratio...Accurate acceleration acquisition is a critical issue in the robotic exoskeleton system,but it is difficult to directly obtain the acceleration via the existing sensing systems.The existing algorithm-based acceleration acquisition methods put more attention on finite-time convergence and disturbance suppression but ignore the error constraint and initial state irrelevant techniques.To this end,a novel radical bias function neural network(RBFNN)based fixed-time reconstruction scheme with error constraints is designed to realize high-performance acceleration estimation.In this scheme,a novel exponential-type barrier Lyapunov function is proposed to handle the error constraints.It also provides a unified and concise Lyapunov stability-proof template for constrained and non-constrained systems.Moreover,a fractional power sliding mode control law is designed to realize fixed-time convergence,where the convergence time is irrelevant to initial states or external disturbance,and depends only on the chosen parameters.To further enhance observer robustness,an RBFNN with the adaptive weight matrix is proposed to approximate and attenuate the completely unknown disturbances.Numerical simulation and human sub ject experimental results validate the unique properties and practical robustness.展开更多
A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming th...A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming the free energy to be a state function,the basic governing equations are derived.According to the balance of released and dissipated energy,the general form of damage evolution equation is obtained.Further,assuming the existence of independent damage mechanisms, the normality of damage evolution equation is proven.The generalized damage variables are dis- cussed.Finally,some examples are given to show the applications of the theory.展开更多
We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of t...We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.展开更多
In this paper,we study the coupled system of Kirchhoff type equations−(a+b∫R 3|∇u|2 dx)Δu+u=2αα+β|u|α−2 u|v|β,−(a+b∫R 3|∇v|2 dx)Δv+v=2βα+β|u|α|v|β−2 v,u,v∈H 1(R 3),x∈R 3,x∈R 3,where a,b>0,α,β>...In this paper,we study the coupled system of Kirchhoff type equations−(a+b∫R 3|∇u|2 dx)Δu+u=2αα+β|u|α−2 u|v|β,−(a+b∫R 3|∇v|2 dx)Δv+v=2βα+β|u|α|v|β−2 v,u,v∈H 1(R 3),x∈R 3,x∈R 3,where a,b>0,α,β>1 and 3<α+β<6.We prove the existence of a ground state solution for the above problem in which the nonlinearity is not 4-superlinear at infinity.Also,using a discreetness property of Palais-Smale sequences and the Krasnoselkii genus method,we obtain the existence of infinitely many geometrically distinct solutions in the case whenα,β≥2 and 4≤α+β<6.展开更多
基金the National Key Basic Research Program of China (Grant No. 2013CB834400)the National Natural Science Foundation of China (Grant No. 11235001)
文摘Multi-quasiparticle states and rotational bands in neutron-rich erbium isotopes have been investigated by the configuration- constrained pairing-deformation-frequency self-consistent total-Routhian-surface (TRS) method with particle-number-conserved pairing. Specifically, the recently observed Kπ = 4- bands in 168,170,172Er have been found to experience a configuration change in our calculation. Some other multi-quasiparticle states with uncertain configuration assignments have been reinvestigated by calculating their collective rotations. The configuration-constrained TRS calculation can reproduce experimental data consistently.
基金supported by the Science and Technology Project of State Grid Corporation(No.5400-202099286A-0-0-00).
文摘The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..
基金Supported by the National Key R&D Program of China under Grant No.2022ZD0119902the National Natural Science Foundation of China under Grant No.51979020+5 种基金the Top-notch Young Talents Program of China under Grant No.36261402the Dalian High-level Talents Innovation Support Program under Grant No.2022RQ010the Liaoning Revitalization Talents Program under Grant No.XLYC2007188the Natural Science Foundation of Fujian Province under Grant No.2022J01131710the Postdoctoral Research Foundation of China under Grant No.2022M720619in part by the Fundamental Research Funds for the Central Universities 3132023107.
文摘The collision-free straight-line following of an unmanned surface vehicle(USV)moving in a constrained water region subject to stationary and moving obstacles is addressed in this paper.USV systems are normally subjected to surge velocity constraints,yaw rate constraints,and unknown ocean currents.Herein,a safety-certificated line-of-sight(LOS)guidance method is proposed to achieve a constrained straight-line following task.First,an antidisturbance LOS guidance law is designed based on the LOS guidance scheme and an extended state observer.Furthermore,collision avoidance with waterway boundaries and stationary/moving obstacles is encoded in control barrier functions,utilizing which the safety constraints are transformed into input constraints.Finally,safety-certificated guidance signals are obtained by solving a quadratic programming problem subject to input constraints.Using the proposed safety-certified LOS guidance method,the USV can accomplish a straight-line following task with guaranteed input-to-state safety.Simulation results substantiate the efficacy of the proposed safety-certificated LOS guidance method for the straight-line following of USVs moving in a constrained water region subject to unknown ocean currents.
基金Project supported by the Move Robotics Technology Co.,Ltd.the National Natural Science Foundation of China(No.51705163)。
文摘Accurate acceleration acquisition is a critical issue in the robotic exoskeleton system,but it is difficult to directly obtain the acceleration via the existing sensing systems.The existing algorithm-based acceleration acquisition methods put more attention on finite-time convergence and disturbance suppression but ignore the error constraint and initial state irrelevant techniques.To this end,a novel radical bias function neural network(RBFNN)based fixed-time reconstruction scheme with error constraints is designed to realize high-performance acceleration estimation.In this scheme,a novel exponential-type barrier Lyapunov function is proposed to handle the error constraints.It also provides a unified and concise Lyapunov stability-proof template for constrained and non-constrained systems.Moreover,a fractional power sliding mode control law is designed to realize fixed-time convergence,where the convergence time is irrelevant to initial states or external disturbance,and depends only on the chosen parameters.To further enhance observer robustness,an RBFNN with the adaptive weight matrix is proposed to approximate and attenuate the completely unknown disturbances.Numerical simulation and human sub ject experimental results validate the unique properties and practical robustness.
基金Projects Sponsered by the Joint Seismological Science Foundation.
文摘A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming the free energy to be a state function,the basic governing equations are derived.According to the balance of released and dissipated energy,the general form of damage evolution equation is obtained.Further,assuming the existence of independent damage mechanisms, the normality of damage evolution equation is proven.The generalized damage variables are dis- cussed.Finally,some examples are given to show the applications of the theory.
文摘We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.
文摘In this paper,we study the coupled system of Kirchhoff type equations−(a+b∫R 3|∇u|2 dx)Δu+u=2αα+β|u|α−2 u|v|β,−(a+b∫R 3|∇v|2 dx)Δv+v=2βα+β|u|α|v|β−2 v,u,v∈H 1(R 3),x∈R 3,x∈R 3,where a,b>0,α,β>1 and 3<α+β<6.We prove the existence of a ground state solution for the above problem in which the nonlinearity is not 4-superlinear at infinity.Also,using a discreetness property of Palais-Smale sequences and the Krasnoselkii genus method,we obtain the existence of infinitely many geometrically distinct solutions in the case whenα,β≥2 and 4≤α+β<6.