This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuato...This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.展开更多
A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and t...A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.展开更多
In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation o...In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2012AA041701)the Fundamental Research Funds for Central Universities of China(Grant No.2013JBZ007)+1 种基金the National Natural Science Foundation of China(Grant Nos.61233001,61322307,61304196,and 61304157)the Research Program of Beijing Jiaotong University,China(Grant No.RCS2012ZZ003)
文摘This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.
文摘A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.
基金This work was supported by the National Science Foundation (ECS-0501451)Army Research Office (W91NF-05-1-0314).
文摘In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.