Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respecti...Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respectively, thus the relations among Green functions can be found. The connection between canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta in phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear sigma model with Hopf and Chern-Simons terms is reexamined. The property of fractional spin at quantum level has been clarified.展开更多
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent s...For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
基金National Natural Science Foundation of ChinaBeijing Natural Science Foundation.
文摘Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respectively, thus the relations among Green functions can be found. The connection between canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta in phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear sigma model with Hopf and Chern-Simons terms is reexamined. The property of fractional spin at quantum level has been clarified.
文摘For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.