为了简化感应电能传输(inductive power transfer,IPT)电池充电系统原边与副边电路的设计和控制复杂性,该文提出通过在原边电路加入一个附加电容和一个半导体开关的方法实现对电池恒流恒压切换充电,无需调节逆变器直流输入电压、原边移...为了简化感应电能传输(inductive power transfer,IPT)电池充电系统原边与副边电路的设计和控制复杂性,该文提出通过在原边电路加入一个附加电容和一个半导体开关的方法实现对电池恒流恒压切换充电,无需调节逆变器直流输入电压、原边移相控制及副边加入调压电路。恒流模式时,配置的补偿电容完全补偿原边线圈;恒压模式时,只需一个开关切出或者切入附加电容。该方法只需简单的通信(用于充电模式切换),没有复杂的控制策略,结构简单,成本低。实验表明,所提出方法输出的恒流和恒压随着电池等效负载电阻改变而轻微变化,但结果仍然满足电池充电要求。展开更多
为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析...为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析其抗偏移恒压输出特性;选取double-D quadrature(DDQ)结构线圈作为耦合机构,并提出抗偏移参数设计方法,以实现系统二维平面抗偏移恒压输出。此外,该方法还具有以下明显优点:无需复杂的反馈控制,几乎没有无功输入。最后,该文搭建1k W系统原理样机,在横向和垂向考察抗偏移恒压输出特性。负载在45-120Ω范围内变化时,系统输出电压波动始终介于设定的5%以内,在选定的线圈参数条件下,线圈横向最大偏移50%,而线圈在垂向最多可减小23.33%。实验结果表明该方法有效且可行。展开更多
为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制...为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制方法。首先,分析LCC-S型IPT系统的参数与效率、输出功率的关系,通过参数优化设计使最优效率达到最大化;然后,在副边采用基于Buck-Boost电路的阻抗匹配技术以实现最大效率跟踪,同时在原边设计一阶LADRC对输出电压进行闭环控制,并给出控制器参数选取规则,所提复合控制方法保证效率和电压2个控制回路之间的解耦运行;最后,搭建实验平台对理论分析进行验证。实验结果表明,当负载电阻从满载到轻载变化时,所提系统可以实现恒压输出,整体效率保持在85.7%,与比例积分控制相比,LADRC对负载扰动和参考电压扰动具有更好的输出电压动态调节作用。展开更多
由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的...由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的恒定充电电流和恒定充电电压是非常必要的.然而在充电过程中,电池的等效电阻会发生显著变化从而导致系统很难在近似零相位角(zero phase angle,ZPA)运行下同时实现与负载无关的恒流输出和恒压输出.鉴于此,提出1种基于S/LCL补偿的WPT系统,该系统可以在2个固定频率下实现具有ZPA运行的恒流和恒压输出.最后,搭建了1台恒流充电为3 A和恒压充电为80 V的验证性实验样机,验证了所设计的WPT系统的正确性和可行性.展开更多
文摘为了简化感应电能传输(inductive power transfer,IPT)电池充电系统原边与副边电路的设计和控制复杂性,该文提出通过在原边电路加入一个附加电容和一个半导体开关的方法实现对电池恒流恒压切换充电,无需调节逆变器直流输入电压、原边移相控制及副边加入调压电路。恒流模式时,配置的补偿电容完全补偿原边线圈;恒压模式时,只需一个开关切出或者切入附加电容。该方法只需简单的通信(用于充电模式切换),没有复杂的控制策略,结构简单,成本低。实验表明,所提出方法输出的恒流和恒压随着电池等效负载电阻改变而轻微变化,但结果仍然满足电池充电要求。
文摘为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制方法。首先,分析LCC-S型IPT系统的参数与效率、输出功率的关系,通过参数优化设计使最优效率达到最大化;然后,在副边采用基于Buck-Boost电路的阻抗匹配技术以实现最大效率跟踪,同时在原边设计一阶LADRC对输出电压进行闭环控制,并给出控制器参数选取规则,所提复合控制方法保证效率和电压2个控制回路之间的解耦运行;最后,搭建实验平台对理论分析进行验证。实验结果表明,当负载电阻从满载到轻载变化时,所提系统可以实现恒压输出,整体效率保持在85.7%,与比例积分控制相比,LADRC对负载扰动和参考电压扰动具有更好的输出电压动态调节作用。