In this paper,the air-water vapor-water system is taken as an example,and the formula of constant-pressure specific heat during non-equilibrium phase change process in the two-phase flow system is deduced using the th...In this paper,the air-water vapor-water system is taken as an example,and the formula of constant-pressure specific heat during non-equilibrium phase change process in the two-phase flow system is deduced using the theory of two-phase flow and thermophysics. The constant-pressure specific heat of non-equilibrium phase change process is calculated with the corresponding numerical model,and the numerical results are compared to those of the equilibrium phase change process. It is shown that in evaporation process,the variational rate of the non-equilibrium specific heat increases with increasing initial fluid temperature and particle mass fraction. The smaller particle radius is,the faster the varia-tional rate is. Meanwhile,the constant-pressure specific heat of equilibrium process is higher than that of the non-equilibrium process all the time.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50536030 and 50676102)
文摘In this paper,the air-water vapor-water system is taken as an example,and the formula of constant-pressure specific heat during non-equilibrium phase change process in the two-phase flow system is deduced using the theory of two-phase flow and thermophysics. The constant-pressure specific heat of non-equilibrium phase change process is calculated with the corresponding numerical model,and the numerical results are compared to those of the equilibrium phase change process. It is shown that in evaporation process,the variational rate of the non-equilibrium specific heat increases with increasing initial fluid temperature and particle mass fraction. The smaller particle radius is,the faster the varia-tional rate is. Meanwhile,the constant-pressure specific heat of equilibrium process is higher than that of the non-equilibrium process all the time.