Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governi...Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.展开更多
By means of flumes, experiments have been done in order to determine the effects of consolidation time and particle size on scour rates of cohesive sediment. Experimental results shown dry unit weight increased and sc...By means of flumes, experiments have been done in order to determine the effects of consolidation time and particle size on scour rates of cohesive sediment. Experimental results shown dry unit weight increased and scour rates decreased during the course of consolidation, the resistance to scour was related to consolidation time, but it presented different consolidation properties that depended on particle size. For the finer particle, the consolidation process was longer, the range of dry unit weight altered was greater, the consolidated sediments moved in chunks. On the other hand, based on analysis of the relationship of dry unit weight change with consolidation time, the simplified analytical expressions of dry unit weight and scour rates were derived, the results were checked with experimental data in the same flow situation and good agreements were achieved. Since the effects of different particle size were considered during the process of consolidation, the variations of consolidation properties were well reflected in these formulas.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 51109092)the National Science Foundation for Post-doctoral Scientists of China (No. 2013M530237)the Jiangsu University Foundation for Advanced Talents (No. 12JDG098), China
文摘Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50679064)the Fund of Ph. D. Student Supervisor of Ministry of Education of China (Grant No. 20050486007)the National Key Project for Basic Research (Grant No. 2003CB415200).
文摘By means of flumes, experiments have been done in order to determine the effects of consolidation time and particle size on scour rates of cohesive sediment. Experimental results shown dry unit weight increased and scour rates decreased during the course of consolidation, the resistance to scour was related to consolidation time, but it presented different consolidation properties that depended on particle size. For the finer particle, the consolidation process was longer, the range of dry unit weight altered was greater, the consolidated sediments moved in chunks. On the other hand, based on analysis of the relationship of dry unit weight change with consolidation time, the simplified analytical expressions of dry unit weight and scour rates were derived, the results were checked with experimental data in the same flow situation and good agreements were achieved. Since the effects of different particle size were considered during the process of consolidation, the variations of consolidation properties were well reflected in these formulas.