A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlat...A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.展开更多
The strain dependent characteristics of hard coatings make the vibration analysis of hard-coated composite structure become a challenging task. In this study, the modeling and the analysis method of a hard-coated comp...The strain dependent characteristics of hard coatings make the vibration analysis of hard-coated composite structure become a challenging task. In this study, the modeling and the analysis method of a hard-coated composite beam was developed considering the strain dependent characteristics of coating material. Firstly, based on analyzing the properties of hard-coating material, a high order polynomial was adopted to characterize the strain dependent characteristics of coating materials. Then, the analytical model of a hard-coated composite beam was created by the energy method. Next, using the numerical method to solve the vibration response and the resonance frequencies of the composite beam, a specific calculation flow was also proposed. Finally,a cantilever beam coated with Mg O + Al2_O_3 hard coating was chosen as the study case; under different excitation levels, the resonance region responses and the resonance frequencies of the composite beam were calculated using the proposed method. The calculation results were compared with the experiment and the linear calculation, and the correctness of the created model was verified. The study shows that compared with the general linear calculation, the proposed method can still maintain an acceptable precision when the excitation level is larger.展开更多
The design of the Qitai 110 m Radio Telescope(QTT) with large aperture and very high working frequency(115 GHz) was investigated in Xinjiang, China. The results lead to a main reflector with high surface precision...The design of the Qitai 110 m Radio Telescope(QTT) with large aperture and very high working frequency(115 GHz) was investigated in Xinjiang, China. The results lead to a main reflector with high surface precision and high pointing precision. In this paper, the properties of active surface adjustment in a deformed parabolic reflector antenna are analyzed. To assure the performance of large reflector antennas such as gain and boresight, which can be obtained by utilizing an electromechanical coupling model, and satisfy them simultaneously, research on active surface adjustment applied to a new parabolic reflector as target surface has been done. Based on the initial position of actuators and the relationship between adjustment points and target points, a novel mathematical model and a program thatdirectly calculates the movements of actuators have been developed for guiding the active surface adjustment of large reflector antennas. This adjustment method is applied to an 8 m reflector antenna,in which we only consider gravity deformation. The results show that this method is more efficient in adjusting the surface and improving the working performance.展开更多
An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic rela...An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.展开更多
The influence of a mechanical structure's volume increment on the volume power density (VPD) of triboelectric nanogenerators (TENGs) is often neglected when considering surface charge density and surface power den...The influence of a mechanical structure's volume increment on the volume power density (VPD) of triboelectric nanogenerators (TENGs) is often neglected when considering surface charge density and surface power density. This paper aims to address this gap by introducing a standardized VPD metric for a more comprehensive evaluation of TENG performance. The study specifically focuses on 2 frequency-up mechanisms, namely, the integration of planetary gears (PG-TENG) and the implementation of a double-cantilever structure (DC-TENG), to investigate their impact on VPD. The study reveals that the PG-TENG achieves the highest volume average power density, measuring at 0.92 W/m^(3). This value surpasses the DC-TENG by 1.26 times and the counterpart TENG by a magnitude of 69.9 times. Additionally, the PG-TENG demonstrates superior average power output. These findings introduce a new approach for enhancing TENGs by incorporating frequency-up mechanisms, and highlight the importance of VPD as a key performance metric for evaluating TENGs.展开更多
Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard la...Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire ris展开更多
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to cha...A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.展开更多
A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is ...A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.展开更多
Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to pr...Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to predict the structural dynamic response in the design course. This paper presents a new numerical algorithm and scheme to solve the structural dynamics responses when considering fluid–structure interaction(FSI). Numerical simulation for a free-flying structural model in transonic speed is completed. Results show that the small elastic deformation of the structure can greatly affect the FSI. The FSI vibration tests are carried out in a transonic speed windtunnel for checking numerical theory and algorithms, and the wind-tunnel test results well accord with that of the numerical simulation. This indicates that the presented numerical method can be applied to predicting the structural dynamics responses when containing the FSI.展开更多
By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A ...By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry.By combining this Q-band and previously developed V- and W-band reflectometries,the density profiles from edge to core can be measured in most EAST experiments.The line integrated densities deduced from density profiles measured by reflectometry are consistent with those directly measured by a horizontal interferometer.The density pedestal measured by reflectometry shows a clear crash during an ELM(edge localized mode) event,after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.展开更多
基金supported by the National Natural Science Foundation for Excellent Young Scholars(Grant 51222502)the National Natural Science Foundation of China(Grant 11172096)the Funds for State Key Laboratory of Construction Machinery(SKLCM2014-1)
文摘A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant 51375079)the Fundamental Research Funds for the Central Universities of China(Grant N140301001)
文摘The strain dependent characteristics of hard coatings make the vibration analysis of hard-coated composite structure become a challenging task. In this study, the modeling and the analysis method of a hard-coated composite beam was developed considering the strain dependent characteristics of coating material. Firstly, based on analyzing the properties of hard-coating material, a high order polynomial was adopted to characterize the strain dependent characteristics of coating materials. Then, the analytical model of a hard-coated composite beam was created by the energy method. Next, using the numerical method to solve the vibration response and the resonance frequencies of the composite beam, a specific calculation flow was also proposed. Finally,a cantilever beam coated with Mg O + Al2_O_3 hard coating was chosen as the study case; under different excitation levels, the resonance region responses and the resonance frequencies of the composite beam were calculated using the proposed method. The calculation results were compared with the experiment and the linear calculation, and the correctness of the created model was verified. The study shows that compared with the general linear calculation, the proposed method can still maintain an acceptable precision when the excitation level is larger.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2015CB857100)the National Natural Science Foundation of China(Grant Nos.51522507,51475349 and 51490660)+1 种基金the Youth Science and Technology Star Project of Shaanxi Province(Grant No.2016KJXX-06)the National 111 Project(Grant No.B14042)
文摘The design of the Qitai 110 m Radio Telescope(QTT) with large aperture and very high working frequency(115 GHz) was investigated in Xinjiang, China. The results lead to a main reflector with high surface precision and high pointing precision. In this paper, the properties of active surface adjustment in a deformed parabolic reflector antenna are analyzed. To assure the performance of large reflector antennas such as gain and boresight, which can be obtained by utilizing an electromechanical coupling model, and satisfy them simultaneously, research on active surface adjustment applied to a new parabolic reflector as target surface has been done. Based on the initial position of actuators and the relationship between adjustment points and target points, a novel mathematical model and a program thatdirectly calculates the movements of actuators have been developed for guiding the active surface adjustment of large reflector antennas. This adjustment method is applied to an 8 m reflector antenna,in which we only consider gravity deformation. The results show that this method is more efficient in adjusting the surface and improving the working performance.
文摘An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.
基金funded by the National Natural Science Foundation of China(Nos.62001281 and 62225308)the Shanghai Science and Technology Committee(22dz1204300).
文摘The influence of a mechanical structure's volume increment on the volume power density (VPD) of triboelectric nanogenerators (TENGs) is often neglected when considering surface charge density and surface power density. This paper aims to address this gap by introducing a standardized VPD metric for a more comprehensive evaluation of TENG performance. The study specifically focuses on 2 frequency-up mechanisms, namely, the integration of planetary gears (PG-TENG) and the implementation of a double-cantilever structure (DC-TENG), to investigate their impact on VPD. The study reveals that the PG-TENG achieves the highest volume average power density, measuring at 0.92 W/m^(3). This value surpasses the DC-TENG by 1.26 times and the counterpart TENG by a magnitude of 69.9 times. Additionally, the PG-TENG demonstrates superior average power output. These findings introduce a new approach for enhancing TENGs by incorporating frequency-up mechanisms, and highlight the importance of VPD as a key performance metric for evaluating TENGs.
基金The study was supported by College of Agriculture,Shiraz University(Grant No.96GRD1M271143).
文摘Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire ris
基金supported by the National Natural Science Foundation of China(Grant Nos.U1262103,11302218 and 11172289)Anhui Provincial Natural Science Foundation(Grant Nos.1308085QA10 and 1408085J08)the Fundamental Research Funds for the Central Universities of China
文摘A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.
基金supported by the National Natural Science Foundation of China(Grants 11272155,11132007,and11502113)the 333 Project of Jiangsu Province in China(Grant BRA2011172)the Fundamental Research Funds for Central Universities(Grant 30920130112009)
文摘A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.
基金supported by the National Natural Science Foundation of China(No.50875212)Specialized Research Fund(priority development area)for the Doctoral Program of Higher Education of China(No.20126102130004)
文摘Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to predict the structural dynamic response in the design course. This paper presents a new numerical algorithm and scheme to solve the structural dynamics responses when considering fluid–structure interaction(FSI). Numerical simulation for a free-flying structural model in transonic speed is completed. Results show that the small elastic deformation of the structure can greatly affect the FSI. The FSI vibration tests are carried out in a transonic speed windtunnel for checking numerical theory and algorithms, and the wind-tunnel test results well accord with that of the numerical simulation. This indicates that the presented numerical method can be applied to predicting the structural dynamics responses when containing the FSI.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB106000 and 2014GB106003)National Natural Science Foundation of China(Nos.11275234,11305215,11305208)
文摘By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry.By combining this Q-band and previously developed V- and W-band reflectometries,the density profiles from edge to core can be measured in most EAST experiments.The line integrated densities deduced from density profiles measured by reflectometry are consistent with those directly measured by a horizontal interferometer.The density pedestal measured by reflectometry shows a clear crash during an ELM(edge localized mode) event,after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.