期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Recent Progresses in Deep Learning Based Acoustic Models 被引量:9
1
作者 Dong Yu Jinyu Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期396-409,共14页
In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) a... In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) and convolutional neural networks(CNNs) that can effectively exploit variablelength contextual information,and their various combination with other models.We then describe models that are optimized end-to-end and emphasize on feature representations learned jointly with the rest of the system,the connectionist temporal classification(CTC) criterion,and the attention-based sequenceto-sequence translation model.We further illustrate robustness issues in speech recognition systems,and discuss acoustic model adaptation,speech enhancement and separation,and robust training strategies.We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research. 展开更多
关键词 Attention model convolutional neural network(CNN) connectionist temporal classification(CTC) deep learning(DL) long short-term memory(LSTM) permutation invariant training speech adaptation speech processing speech recognition speech separation
下载PDF
复杂性视阈下的缘身认知动力系统研究 被引量:10
2
作者 张铁山 《系统科学学报》 CSSCI 北大核心 2011年第2期51-54,67,共5页
认知主义(符号主义)和联结主义研究范式是认知科学中非交互的表征式建构模式。它们具有自身的特征和局限性。缘身认知"动力系统理论"(DST)是认知科学的一种复杂性视阈中的新进路和方法。缘身—嵌入式认知"动力系统"... 认知主义(符号主义)和联结主义研究范式是认知科学中非交互的表征式建构模式。它们具有自身的特征和局限性。缘身认知"动力系统理论"(DST)是认知科学的一种复杂性视阈中的新进路和方法。缘身—嵌入式认知"动力系统"是由认知者的大脑、身体和周围环境构成的自组织认知系统。这些构成要素共同生成认知耦合机制。这种缘身-嵌入式认知动力系统理论对揭示认知者的认知机理具有重要的理论指导作用,但是,由于仍然存在诸多问题则其理论的研究仍然任重道远。 展开更多
关键词 认知主义 联结主义 缘身认知动力系统 耦合机制
原文传递
Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool 被引量:9
3
作者 Mohammad Ali Ahmadi Reza Soleimani +2 位作者 Moonyong Lee Tomoaki Kashiwao Alireza Bahadori 《Petroleum》 2015年第2期118-132,共15页
Greater complexity is involved in the transient pressure analysis of horizontal oil wells in contrast to vertical wells,as the horizontal wells are considered entirely horizontal and parallel with the top and undernea... Greater complexity is involved in the transient pressure analysis of horizontal oil wells in contrast to vertical wells,as the horizontal wells are considered entirely horizontal and parallel with the top and underneath boundaries of the oil reserve.Therefore,there is an essential need to estimate productivity of horizontal wells accurately to examine the effectiveness of a horizontal well in terms of technical and economic prospects.In this work,novel and rigorous methods based on two different types of intelligent approaches including the artificial neural network(ANN)linked to the particle swarm optimization(PSO)tool are developed to precisely forecast the productivity of horizontal wells under pseudo-steady-state conditions.It was found that there is very good match between the modeling output and the real data taken from the literature,so that a very low average absolute error percentage is attained(e.g.,<0.82%).The developed techniques can be also incorporated in the numerical reservoir simulation packages for the purpose of accuracy improvement as well as better parametric sensitivity analysis. 展开更多
关键词 Well productivity Drainage area Skin factor Least square Support vector machine Hybrid connectionist model Particle swarm optimization
原文传递
DSS结构的联接主义观点 被引量:4
4
作者 田大钢 费奇 《系统工程理论与实践》 EI CSCD 北大核心 2000年第1期7-18,101,共13页
在总结了联接主义方法,特别是ANN对决策过程的各阶段和决策活动各方面的广泛应用的基础上,提出了DSS结构的联接主义观点.阐明可以利用以人工神经网络为代表的联接机制作为统一DSS各部件的基本框架,作为构造决策模型的基本元素.以此达到... 在总结了联接主义方法,特别是ANN对决策过程的各阶段和决策活动各方面的广泛应用的基础上,提出了DSS结构的联接主义观点.阐明可以利用以人工神经网络为代表的联接机制作为统一DSS各部件的基本框架,作为构造决策模型的基本元素.以此达到既简化DSS结构又完善DSS功能的目的. 展开更多
关键词 联接主义 神经网络 决策支持系统 人工智能
原文传递
汉字阅读的联结主义模型 被引量:8
5
作者 杨剑峰 舒华 《心理学报》 CSSCI CSCD 北大核心 2008年第5期516-522,共7页
汉字与英语词汇阅读受到相同统计属性的影响,表现出阅读加工的普遍性,汉字独特的形-音对应关系又体现出阅读的语言特异性。模型1建构与英文阅读模型完全相同的计算机模型,设计汉字的字形与语音表征方案,成功模拟出汉字阅读的规则性、一... 汉字与英语词汇阅读受到相同统计属性的影响,表现出阅读加工的普遍性,汉字独特的形-音对应关系又体现出阅读的语言特异性。模型1建构与英文阅读模型完全相同的计算机模型,设计汉字的字形与语音表征方案,成功模拟出汉字阅读的规则性、一致性效应及其与频率的交互作用,得到与行为实验相同的结果模式;模型2改变声旁独立成字时的字形表征,结果规则性效应消失。模拟结果一方面表明汉字与英语词汇阅读可能具有普遍的加工机制,都是对输入语料的形-音对应关系统计学习的结果;另一方面表明输入语料的不同统计属性可能是汉字阅读的语言特异性来源。 展开更多
关键词 汉字阅读 联结主义 规则性 一致性
下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
6
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
下载PDF
学习控制系统 被引量:6
7
作者 邓志东 张再兴 孙增圻 《信息与控制》 CSCD 北大核心 1996年第2期94-103,共10页
一般性地论述了学习控制的基本理论问题,给出了学习与学习控制系统的若干定义,探讨了学习控制与智能控制的关系.基于学习控制的发展历史与研究现状,将学习控制系统划分为基于模式识别的学习控制、异步自学习控制及连接主义的学习控制等... 一般性地论述了学习控制的基本理论问题,给出了学习与学习控制系统的若干定义,探讨了学习控制与智能控制的关系.基于学习控制的发展历史与研究现状,将学习控制系统划分为基于模式识别的学习控制、异步自学习控制及连接主义的学习控制等,并给出了有关的研究进展及存在的问题.最后指出,与模糊逻辑、专家系统的进一步结合,是学习控制系统发展的必然趋势. 展开更多
关键词 学习控制 智能控制 模糊逻辑 专家系统
下载PDF
获得性阅读障碍的“主要系统”假说 被引量:5
8
作者 王小娟 杨剑峰 舒华 《心理科学进展》 CSSCI CSCD 北大核心 2008年第6期868-873,共6页
认知神经心理学为阅读机制的探讨提供了大量的证据,认为不同阅读障碍是不同加工通道选择性受损的结果。近年来,基于联结主义的三角模型理论,研究者提出了主要系统假说(primary system hypothesis),认为阅读障碍是主要的认知系统(如视觉... 认知神经心理学为阅读机制的探讨提供了大量的证据,认为不同阅读障碍是不同加工通道选择性受损的结果。近年来,基于联结主义的三角模型理论,研究者提出了主要系统假说(primary system hypothesis),认为阅读障碍是主要的认知系统(如视觉、语义和语音系统)受损导致的:表层障碍是因为语义系统受损导致的阅读困难,语音和深层障碍是语音和语义系统同时受损时综合症状的连续体。该理论认为各主要系统可能同时是多个认知活动的加工成分,一个系统的受损会影响所有与之相关的认知过程,从而把阅读障碍与其它认知功能障碍联系起来。统一的主要系统受损下对各种获得性阅读障碍形成机制在文中得到详细的解释。 展开更多
关键词 联结主义 “主要系统”假说 表层障碍 语音障碍 深层障碍
下载PDF
An Efficient Hybrid Model for Arabic Text Recognition
9
作者 Hicham Lamtougui Hicham El Moubtahij +1 位作者 Hassan Fouadi Khalid Satori 《Computers, Materials & Continua》 SCIE EI 2023年第2期2871-2888,共18页
In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and effici... In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field,especially for the Arabic language,which,compared to other languages,has a dearth of published works.In this work,we presented an efficient and new system for offline Arabic handwritten text recognition.Our new approach is based on the combination of a Convolutional Neural Network(CNN)and a Bidirectional Long-Term Memory(BLSTM)followed by a Connectionist Temporal Classification layer(CTC).Moreover,during the training phase of the model,we introduce an algorithm of data augmentation to increase the quality of data.Our proposed approach can recognize Arabic handwritten texts without the need to segment the characters,thus overcoming several problems related to this point.To train and test(evaluate)our approach,we used two Arabic handwritten text recognition databases,which are IFN/ENIT and KHATT.The Experimental results show that our new approach,compared to other methods in the literature,gives better results. 展开更多
关键词 Deep learning arabic handwritten text recognition convolutional neural network(CNN) bidirectional long-term memory(BLSTM) connectionist temporal classification(CTC)
下载PDF
言语感知的联结主义模型 被引量:3
10
作者 崔刚 杨莉 《外语教学》 CSSCI 北大核心 2009年第5期1-4,9,共5页
言语感知是语言理解的起始阶段,是指听者把连续的语音辨认为单词的过程。本文主要针对联结主义心理语言学对于言语感知的相关研究进行综述与评价,包括语流的切分、音位的识别和单词的辨认三个部分,最后又对相关研究的发展趋势进行了简... 言语感知是语言理解的起始阶段,是指听者把连续的语音辨认为单词的过程。本文主要针对联结主义心理语言学对于言语感知的相关研究进行综述与评价,包括语流的切分、音位的识别和单词的辨认三个部分,最后又对相关研究的发展趋势进行了简要的讨论。 展开更多
关键词 言语感知 联结主义 模型
原文传递
词素效应到底是什么?——来自维吾尔语的证据 被引量:3
11
作者 玛依拉.亚克甫 3.周晓林 《心理学报》 CSSCI CSCD 北大核心 2004年第5期515-524,共10页
利用维吾尔语的一些特点 ,采用视觉 -视觉启动听觉 -视觉跨通道启动、和延迟重复启动等三种启动技术 ,改变目标词和启动词之间在词素、词形以及语义上的多种关系 ,通过比较启动效应的异同 ,来考察词素效应是否可以还原为词形启动效应、... 利用维吾尔语的一些特点 ,采用视觉 -视觉启动听觉 -视觉跨通道启动、和延迟重复启动等三种启动技术 ,改变目标词和启动词之间在词素、词形以及语义上的多种关系 ,通过比较启动效应的异同 ,来考察词素效应是否可以还原为词形启动效应、语义效应 ,是否可以看成是词形和语义在实时加工中相互作用的后果 ,从而探讨词汇加工中词素效应的实质。实验一发现 ,在明确配对的视觉 -视觉和跨通道启动中 ,启动词和目标词之间只有在具有词素加语义关系 (+m +o +s /D ,+m +o +s /R ;其中m代表词素 ,o代表词形 ,s代表语义 ,D代表目标词为派生词 ,R代表目标词为自由词根 ;+表示启动词和目标词之间在某个维度上相关 ,-表示启动词和目标词之间在某个维度上无关 )时或者仅仅具有语义关系 (-m -o+s /D)时 ,才有显著的启动效应。如果启动词与目标词之间仅仅具有词素 (词形 )关系 ,而没有语义关系 (+m +o -s /D) ,或者仅仅具有词形关系 (-m +o -s /R) ,它们之间的启动效应微乎其微。实验二通过使用维吾尔语中的借词和延迟启动技术 ,比较了词素加语义加词形 (+m +o +s /D)启动和语义加词形启动 (-m +o +s /D)以及语义启动 (-m +o+s /D) ,发现词素启动效应并没有不同于其他启动条件下的效应。两个实验都表明 。 展开更多
关键词 词汇加工 词素启动 维吾尔语 连接主义
下载PDF
Brain as an Emergent Finite Automaton: A Theory and Three Theorems
12
作者 Juyang Weng 《International Journal of Intelligence Science》 2015年第2期112-131,共20页
This paper models a biological brain—excluding motivation (e.g., emotions)—as a Finite Automaton in Developmental Network (FA-in-DN), but such an FA emerges incrementally in DN. In artificial intelligence (AI), ther... This paper models a biological brain—excluding motivation (e.g., emotions)—as a Finite Automaton in Developmental Network (FA-in-DN), but such an FA emerges incrementally in DN. In artificial intelligence (AI), there are two major schools: symbolic and connectionist. Weng 2011 [1] proposed three major properties of the Developmental Network (DN) which bridged the two schools: 1) From any complex FA that demonstrates human knowledge through its sequence of the symbolic inputs-outputs, a Developmental Program (DP) incrementally develops an emergent FA itself inside through naturally emerging image patterns of the symbolic inputs-outputs of the FA. The DN learning from the FA is incremental, immediate and error-free;2) After learning the FA, if the DN freezes its learning but runs, it generalizes optimally for infinitely many inputs and actions based on the neuron’s inner-product distance, state equivalence, and the principle of maximum likelihood;3) After learning the FA, if the DN continues to learn and run, it “thinks” optimally in the sense of maximum likelihood conditioned on its limited computational resource and its limited past experience. This paper gives an overview of the FA-in-DN brain theory and presents the three major theorems and their proofs. 展开更多
关键词 BRAIN Mind connectionist AUTOMATA THEORY Finite AUTOMATON Symbolic Artificial Intelligence
下载PDF
TYPICAL STRUCTURES FOR LEARNING CONTROL
13
作者 Cai Zixing 《Journal of Central South University》 SCIE EI CAS 1998年第1期61-64,共4页
Some typical structural schemes of learning control have been investigated.The schemes involve the pattern recognitionbased learning control,iterative learning control,repetitive learning control,and connectionist lea... Some typical structural schemes of learning control have been investigated.The schemes involve the pattern recognitionbased learning control,iterative learning control,repetitive learning control,and connectionist learning control,etc.This study focuses on the control mechanism and provides a basis for potential applications.Most of the structural schemes have been applied to various control fields. 展开更多
关键词 LEARNING CONTROL pattern recognition ITERATIVE LEARNING REPETITIVE LEARNING connectionist LEARNING
下载PDF
HLR-Net: A Hybrid Lip-Reading Model Based on Deep Convolutional Neural Networks 被引量:2
14
作者 Amany M.Sarhan Nada M.Elshennawy Dina M.Ibrahim 《Computers, Materials & Continua》 SCIE EI 2021年第8期1531-1549,共19页
Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading mode... Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading model that helps deaf people and persons with hearing problems to understand a speaker by capturing a video of the speaker and inputting it into the proposed model to obtain the corresponding subtitles.Using deep learning technologies makes it easier for users to extract a large number of different features,which can then be converted to probabilities of letters to obtain accurate results.Recently proposed methods for lip reading are based on sequence-to-sequence architectures that are designed for natural machine translation and audio speech recognition.However,in this paper,a deep convolutional neural network model called the hybrid lip-reading(HLR-Net)model is developed for lip reading from a video.The proposed model includes three stages,namely,preprocessing,encoder,and decoder stages,which produce the output subtitle.The inception,gradient,and bidirectional GRU layers are used to build the encoder,and the attention,fully-connected,activation function layers are used to build the decoder,which performs the connectionist temporal classification(CTC).In comparison with the three recent models,namely,the LipNet model,the lip-reading model with cascaded attention(LCANet),and attention-CTC(A-ACA)model,on the GRID corpus dataset,the proposed HLR-Net model can achieve significant improvements,achieving the CER of 4.9%,WER of 9.7%,and Bleu score of 92%in the case of unseen speakers,and the CER of 1.4%,WER of 3.3%,and Bleu score of 99%in the case of overlapped speakers. 展开更多
关键词 LIP-READING visual speech recognition deep neural network connectionist temporal classification
下载PDF
A STUDY OF THE ORGANIZATION OF L2 MENTAL LEXICON THROUGH WORD ASSOCIATION TESTS 被引量:1
15
作者 李晓丽 孙蓝 《Chinese Journal of Applied Linguistics》 2009年第6期80-87,128,共9页
Based on the Self-organizing Model of Bilingual Processing (SOMBIP) proposed by Li & Farkas (2002), this paper has aimed at exploring whether L2 mental lexicon undergoes a reorganizational process through word ass... Based on the Self-organizing Model of Bilingual Processing (SOMBIP) proposed by Li & Farkas (2002), this paper has aimed at exploring whether L2 mental lexicon undergoes a reorganizational process through word association tests on learners of different language proficiency. The results show that response types vary greatly among the three groups. Of all the responses elicited among beginners, responses of non-relationship type and phonological type take up the leading part. As to the responses made by inter... 展开更多
关键词 Self-organizing connectionist Model L2 mental lexicon ORGANIZATION RECONSTRUCTION
原文传递
联接机制与符号机制相结合的机器学习系统:发展与展望 被引量:1
16
作者 孟祥武 程虎 《计算机科学》 CSCD 北大核心 1996年第3期6-9,共4页
机器学习是人工智能研究的一个重点,并已出现了多种学习方法,如:机械学习、归纳学习、演绎学习、类比学习、基于解释学习、遗传算法和联接学习等.
关键词 机器学习系统 人工智能 联接机制 符合机制
下载PDF
转型语境下高校通识教育课程的联结式开发思路 被引量:1
17
作者 李宝斌 刘英玲 李艳 《大理大学学报》 CAS 2017年第11期94-98,共5页
转型发展语境下,面对更复杂的社会背景和更多元的人才培养目标,高校原有的人才培养方案、课程建设规划已不适应时代要求,应该适时调整。应重视通识教育培养具备终身学习能力和终身就业能力人才的优势,在联结论思想指导下,积极建设通识... 转型发展语境下,面对更复杂的社会背景和更多元的人才培养目标,高校原有的人才培养方案、课程建设规划已不适应时代要求,应该适时调整。应重视通识教育培养具备终身学习能力和终身就业能力人才的优势,在联结论思想指导下,积极建设通识教育课程。联结式通识教育课程强调"多元性统一",以主题为中心建立关联组合。为了保证课程的顺利建设,有必要整合多方教育资源,建立课程开发"教育集成研讨厅",在跨学科、跨领域利益相关者的共同努力下,推进课程建设。 展开更多
关键词 转型语境 高等学校 通识教育课程 联结论
下载PDF
Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Net work Encoder 被引量:1
18
作者 ZHU Tao CHENG Chunling 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第1期70-75,共6页
Traditional speech recognition model based on deep neural network(DNN)and hidden Markov model(HMM)is a complex and multi-module system.In other words,optimization goals may differ between modules in traditional model.... Traditional speech recognition model based on deep neural network(DNN)and hidden Markov model(HMM)is a complex and multi-module system.In other words,optimization goals may differ between modules in traditional model.Besides,additional language resources are required,such as pronunciation dictionary and language model.To eliminate the drawbacks of traditional model,we hereby propose an end-to-end speech recognition method,where connectionist temporal classification(CTC)and attention are integrated for decoding.In our model,the complex modules are replaced by a single deep network.Our model mainly consists of encoder and decoder.The encoder is constructed by bidirectional long short-term memory(BLSTM)with a triangular structure for feature extraction.The decoder based on CTC-attention decoding utilizes advanced features extracted by shared encoder for training and decoding.The experimental results on the Vox Forge dataset indicate that end-to-end method is superior to basic CTC and attention-based encoder-decoder decoding,and the character error rate(CER)is reduced to 12.9%without using any language model. 展开更多
关键词 END-TO-END connectionist temporal classification(CTC) att ent ion speech recognition
原文传递
Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier
19
作者 M.Govindarajan V.Chandrasekaran S.Anitha 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期851-863,共13页
Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.... Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.Given the increasing dense population of data,traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation.A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning(RKLSTM-CTMDSL)model is introduced for traffic prediction with superior accuracy and minimal time consumption.The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction.In this model,the connectionist Tversky multilayer deep structure learning includes multiple layers for traffic prediction.A large volume of spatial-temporal data are considered as an input-to-input layer.Thereafter,input data are transmitted to hidden layer 1,where a radial kernelized long short-term memory architecture is designed for the relevant attribute selection using activation function results.After obtaining the relevant attributes,the selected attributes are given to the next layer.Tversky index function is used in this layer to compute similarities among the training and testing traffic patterns.Tversky similarity index outcomes are given to the output layer.Similarity value is used as basis to classify data as heavy network or normal traffic.Thus,cellular network traffic prediction is presented with minimal error rate using the RKLSTM-CTMDSL model.Comparative evaluation proved that the RKLSTM-CTMDSL model outperforms conventional methods. 展开更多
关键词 Cellular network traffic prediction connectionist Tversky multilayer deep structure learning attribute selection classification radial kernelized long short-term memory
下载PDF
关于儿童认知发展的新探析——联结主义的途径
20
作者 黄成玲 《榆林学院学报》 2008年第3期90-94,共5页
近年来,联结主义模型常被用来模拟各种心理活动,从而为心理学的一些相关理论提供了精确的、可检验的计算机模拟。联结主义对认知结构和认知发展机制的模拟,为认知发展的量化研究提供了可能性。联结主义模型之所以适用于研究儿童认知发展... 近年来,联结主义模型常被用来模拟各种心理活动,从而为心理学的一些相关理论提供了精确的、可检验的计算机模拟。联结主义对认知结构和认知发展机制的模拟,为认知发展的量化研究提供了可能性。联结主义模型之所以适用于研究儿童认知发展,是因为它与人类大脑有着某些神经类比,也是因为它本质上就是个学习系统。"天平称任务"这个具体的例子很好地说明了联结主义模型模拟认知发展的优势和面临的挑战。 展开更多
关键词 联结主义 认知发展 天平称任务
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部