The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomousl...The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.展开更多
Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually o...Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.展开更多
This paper demonstrates the controlling abilities of a large PV-farm as a Solar-PV inverter for mitigating the chaotic electrical,electromechanical,and torsional oscillations including Subsynchronous resonance in a tu...This paper demonstrates the controlling abilities of a large PV-farm as a Solar-PV inverter for mitigating the chaotic electrical,electromechanical,and torsional oscillations including Subsynchronous resonance in a turbogenerator-based power system.The oscillations include deviations in the machine speed,rotor angle,voltage fluctuations(lead-ing to voltage collapse),and torsional modes.During the night with no solar power generation,the PV-plant switches to PV-STATCOM mode and works as a Solar-PV inverter at its full capacity to attenuate the oscillations.During full sun in the daytime,on any fault detection,the PV-plant responds instantly and stops generating power to work as a Solar-PV inverter.The PV-farm operates in the same mode until the oscillations are fully alleviated.This paper mani-fests the control of the DC-link capacitor voltage of the Solar-PV inverter with a bacterial foraging optimization-based intelligent maximum power point tracking controller for the optimal control of active and reactive power.Kundur’s multi-machine model aggregated with PV-plant is modeled in the Matlab/Simulink environment to examine the rotor swing deviations with associated shaft segments.The results for different test cases of interest demonstrate the posi-tive outcomes of deploying large PV-farms as a smart PV-STATCOM for controlling power system oscillations.展开更多
In the connected vehicle environment, real-time vehicle-state data can be obtained through vehicle-toinfrastructure communication, and the prediction accuracy of urban traffic conditions can significantly increase.Thi...In the connected vehicle environment, real-time vehicle-state data can be obtained through vehicle-toinfrastructure communication, and the prediction accuracy of urban traffic conditions can significantly increase.This study uses the C++/Qt programming language and framework to build a simulation platform. A two-way six-lane intersection is set up on the simulation platform. In addition, two speed guidance algorithms based on optimizing the travel time of a single vehicle or multiple vehicles are proposed. The goal of optimization is to minimize the travel time, with common indicators such as average delay of vehicles, average number of stops, and average stop time chosen as indexes of traffic efficiency. When the traffic flow is not saturated, compared with the case of no speed guidance, single-vehicle speed guidance can improve the traffic efficiency by 20%, whereas multi-vehicle speed guidance can improve the traffic efficiency by 50%. When the traffic flow is saturated, the speed guidance algorithms show outstanding performance. The effect of speed guidance gradually enhances with increasing penetration rate, and the most obvious gains are obtained when the penetration rate increases from 10% to 40%. Thus, this study has shown that speed guidance in the connected vehicle environment can significantly improve the traffic efficiency of intersections, and the multi-vehicle speed guidance strategy is more effective than the single-vehicle speed guidance strategy.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and...Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and actuating processes.However,this may induce system vulnerable to malicious cyber-attacks.To this end,a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks.The proposed method consists of two cascaded model predictive controllers(MPC),which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system.Finally,efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.Index Terms-Attack-resilient control,optimal voltage control,tube-based model predictive control,wind farm-connected power system.展开更多
This paper presents a decentralized fuel efficient model predictive control(MPC) strategy for a group of connected vehicles incorporating vertical vibration. To capture the vehicle vibration dynamics, the dynamics of ...This paper presents a decentralized fuel efficient model predictive control(MPC) strategy for a group of connected vehicles incorporating vertical vibration. To capture the vehicle vibration dynamics, the dynamics of the suspension system is integrated with the longitudinal dynamics of the vehicle. Furthermore, a MPC framework with finite time horizon is formulated to calculate the optimal velocity profile that compromises fuel economy, mobility and ride comfort for every individual vehicle with the safety and physical constraints considered. In the MPC framework, the target velocity is calculated using signal phase and timing(SPAT)information to reduce the number of stoppage at red lights, and the vertical acceleration is calculated parallel to the calculation of the fuel consumption. The MPC optimal problem is solved with fast-MPC approach which enhances the computational efficiency via exploiting the structure of the control system and approximate methods. Simulation studies are conducted over different SPATs and connectivity penetration rates and the results validate the advantages of the proposed control architecture.展开更多
基金Supported by Beijing Nova Program of Science and Technology(Grant No.Z191100001119087)Beijing Municipal Science&Technology Commission(Grant No.Z181100004618005 and Grant No.Z18111000460000)。
文摘The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.
文摘Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.
文摘This paper demonstrates the controlling abilities of a large PV-farm as a Solar-PV inverter for mitigating the chaotic electrical,electromechanical,and torsional oscillations including Subsynchronous resonance in a turbogenerator-based power system.The oscillations include deviations in the machine speed,rotor angle,voltage fluctuations(lead-ing to voltage collapse),and torsional modes.During the night with no solar power generation,the PV-plant switches to PV-STATCOM mode and works as a Solar-PV inverter at its full capacity to attenuate the oscillations.During full sun in the daytime,on any fault detection,the PV-plant responds instantly and stops generating power to work as a Solar-PV inverter.The PV-farm operates in the same mode until the oscillations are fully alleviated.This paper mani-fests the control of the DC-link capacitor voltage of the Solar-PV inverter with a bacterial foraging optimization-based intelligent maximum power point tracking controller for the optimal control of active and reactive power.Kundur’s multi-machine model aggregated with PV-plant is modeled in the Matlab/Simulink environment to examine the rotor swing deviations with associated shaft segments.The results for different test cases of interest demonstrate the posi-tive outcomes of deploying large PV-farms as a smart PV-STATCOM for controlling power system oscillations.
基金supported in part by the National Natural Science Foundation of China(Nos.61673233 and71671100)
文摘In the connected vehicle environment, real-time vehicle-state data can be obtained through vehicle-toinfrastructure communication, and the prediction accuracy of urban traffic conditions can significantly increase.This study uses the C++/Qt programming language and framework to build a simulation platform. A two-way six-lane intersection is set up on the simulation platform. In addition, two speed guidance algorithms based on optimizing the travel time of a single vehicle or multiple vehicles are proposed. The goal of optimization is to minimize the travel time, with common indicators such as average delay of vehicles, average number of stops, and average stop time chosen as indexes of traffic efficiency. When the traffic flow is not saturated, compared with the case of no speed guidance, single-vehicle speed guidance can improve the traffic efficiency by 20%, whereas multi-vehicle speed guidance can improve the traffic efficiency by 50%. When the traffic flow is saturated, the speed guidance algorithms show outstanding performance. The effect of speed guidance gradually enhances with increasing penetration rate, and the most obvious gains are obtained when the penetration rate increases from 10% to 40%. Thus, this study has shown that speed guidance in the connected vehicle environment can significantly improve the traffic efficiency of intersections, and the multi-vehicle speed guidance strategy is more effective than the single-vehicle speed guidance strategy.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
基金supported by the National Natural Science Foundation of China(U1909201)the Hong Kong Polytechnic University Research Program(SB2D).
文摘Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and actuating processes.However,this may induce system vulnerable to malicious cyber-attacks.To this end,a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks.The proposed method consists of two cascaded model predictive controllers(MPC),which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system.Finally,efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.Index Terms-Attack-resilient control,optimal voltage control,tube-based model predictive control,wind farm-connected power system.
基金supported by National Hi-Tech Research and Development Program of China(Grant Nos.2015BAG17B04&2013BAG08B01)U.S.National Science Foundation(Grant No.1544910)U.S.Department of Energy GATE Program and China Scholarship Council
文摘This paper presents a decentralized fuel efficient model predictive control(MPC) strategy for a group of connected vehicles incorporating vertical vibration. To capture the vehicle vibration dynamics, the dynamics of the suspension system is integrated with the longitudinal dynamics of the vehicle. Furthermore, a MPC framework with finite time horizon is formulated to calculate the optimal velocity profile that compromises fuel economy, mobility and ride comfort for every individual vehicle with the safety and physical constraints considered. In the MPC framework, the target velocity is calculated using signal phase and timing(SPAT)information to reduce the number of stoppage at red lights, and the vertical acceleration is calculated parallel to the calculation of the fuel consumption. The MPC optimal problem is solved with fast-MPC approach which enhances the computational efficiency via exploiting the structure of the control system and approximate methods. Simulation studies are conducted over different SPATs and connectivity penetration rates and the results validate the advantages of the proposed control architecture.