The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the...The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.展开更多
Conformational regulation among two or more distant sites is not only one of the main pathways to accomplish multiple tasks in complex biological systems but also represents a powerful strategy to obtain stimuli-respo...Conformational regulation among two or more distant sites is not only one of the main pathways to accomplish multiple tasks in complex biological systems but also represents a powerful strategy to obtain stimuli-responsive supramolecular nanoconstructs with tailored physicochemical performance.We herein report the fabrication of a photochromic supramolecular assembly,which can be synergistically activated by the conformational regulation with bis(4,8-disulfonato-1,5-naphtho)-32-crown-8 and then reversibly switched by the through-space communication between restricted stilbazolium salt and photochromic dithienylethene.This work demonstrates that the synergistic conformational modulation via intra-and intermolecular interactions can be developed as a generalizable approach to construct more advanced biomimetic nanomaterials.展开更多
基金Supported by Grants-in-Aid for Young Scientists(B)(No.15K18454 to Tsujimura T)Scientific Research(B)(No.15H03001 to Hishikawa K)Scientific Research(C)(Nos.25461208 to Takase O,15K09244 to Yoshikawa M and 26462400 to Idei M)from the Japan Society for the Promotion of Science
文摘The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.
基金supported by the National Natural Science Foundation of China(Nos.21871154,21772099,21861132001,and 21873051)the Fundamental Research Funds for the Central Universities,Nankai University。
文摘Conformational regulation among two or more distant sites is not only one of the main pathways to accomplish multiple tasks in complex biological systems but also represents a powerful strategy to obtain stimuli-responsive supramolecular nanoconstructs with tailored physicochemical performance.We herein report the fabrication of a photochromic supramolecular assembly,which can be synergistically activated by the conformational regulation with bis(4,8-disulfonato-1,5-naphtho)-32-crown-8 and then reversibly switched by the through-space communication between restricted stilbazolium salt and photochromic dithienylethene.This work demonstrates that the synergistic conformational modulation via intra-and intermolecular interactions can be developed as a generalizable approach to construct more advanced biomimetic nanomaterials.