Optical models directly effect the irradiance distribution of observed surface. Traditionally, approximate Lambertian models are widely used in designing the light-emitting diodes (LED) arrays in spite of their errors...Optical models directly effect the irradiance distribution of observed surface. Traditionally, approximate Lambertian models are widely used in designing the light-emitting diodes (LED) arrays in spite of their errors compared with the experimental data. But now a novel LED optical model for uniform illumination system has been proposed, in which the curvefitting technique is used to reduce the inherited errors and modify those previous models. The points from the curve of the LED light intensity are adopted, and a spline curve is designed for fitting, which obtains the revised mode. To verify its feasibility, we apply the new model in a 4×4 array design. The results show that compared with the approximate Lambertian, the light intensity distribution produced by the fitting model is more uniform and intense, as is expected.展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
基金supported by the National Natural Science Foundation of China (No.60977068)the Science and Technology Key Project of Quanzhou (No.2009G9)
文摘Optical models directly effect the irradiance distribution of observed surface. Traditionally, approximate Lambertian models are widely used in designing the light-emitting diodes (LED) arrays in spite of their errors compared with the experimental data. But now a novel LED optical model for uniform illumination system has been proposed, in which the curvefitting technique is used to reduce the inherited errors and modify those previous models. The points from the curve of the LED light intensity are adopted, and a spline curve is designed for fitting, which obtains the revised mode. To verify its feasibility, we apply the new model in a 4×4 array design. The results show that compared with the approximate Lambertian, the light intensity distribution produced by the fitting model is more uniform and intense, as is expected.
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.