Stretchable power sources,especially stretchable lithium-ion batteries(LIBs),have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics.Despite recent advances,it is...Stretchable power sources,especially stretchable lithium-ion batteries(LIBs),have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics.Despite recent advances,it is still challenging to develop ultra-stretchable LIBs that can withstand large deformation.In particular,stretchable LIBs require an elastic electrolyte as a basic component,while the conductivity of most elastic electrolytes drops sharply during deformation,especially during large deformations.This is why highly stretchable LIBs have not yet been realized until now.As a proof of concept,a super-stretchable LIB with strain up to 1200%is created based on an intrinsically super-stretchable polymer electrolyte as the lithium-ion conductor.The super-stretchable conductive system is constructed by an effective diblock copolymerization strategy via photocuring of vinyl functionalized 2-ureido-4-pyrimidone(VFUpy),an acrylic monomer containing succinonitrile and a lithium salt,achieving high ionic conductivity(3.5×10^(-4)mS cm^(-1)at room temperature(RT))and large deformation(the strain can reach 4560%).The acrylic elastomer containing Li-ion conductive domains can strongly increase the compatibility between the neighboring elastic networks,resulting in high ionic conductivity under ultra-large deformation,while VFUpy increases elasticity modulus(over three times)and electrochemical stability(voltage window reaches 5.3 V)of the prepared polymer conductor.At a strain of up to 1200%,the resulting stretchable LIBs are still sufficient to power LEDs.This study sheds light on the design and development of high-performance intrinsically super-stretchable materials for the advancement of highly elastic energy storage devices for powering flexible/wearable electronics that can endure large deformation.展开更多
Covalent organic frameworks(COFs) are attractive porous crystalline materials with extremely high stability, easy functionalization, and open channels, which are expected to be unique ion conductors/transporters in li...Covalent organic frameworks(COFs) are attractive porous crystalline materials with extremely high stability, easy functionalization, and open channels, which are expected to be unique ion conductors/transporters in lithium ion batteries(LIBs). Despite recent advances, low ion conductivity and low transference number, resulting in low charging/discharging rate, low energy density, and short battery life, are the main issues that limit their direct application as solid electrolytes in LIBs. Here, we designed and synthesized a novel polyimide COF, namely, TAPA-PDI-COF, with abundant C=O groups, which has been successfully employed as high-performance solid electrolytes by doping TAPA-PDI-COF and succinonitrile(SN). Both the well-defined nanochannels of COFs and SN confined in the well-aligned channels restricted the free migration of anions, while C=O on COFs and CN groups of SN enhanced Li^(+) transport, thus achieving a high ion conductivity of 0.102 m S cm^(-1)at 80 °C and a high lithium-ion transference number of 0.855 at room temperature. According to density functional theory(DFT)calculations, Li-ion migration mainly adopted in-plane transport rather than the axial pathway, which may be due to the shorter hopping distances in the planar pathway. The results suggest an effective strategy for the design and development of all-solidstate ionic conductors for achieving high-performance LIBs.展开更多
Ion transport in materials is routinely probed through several experimental techniques,which introduce variability in reported ionic diffusivities and conductivities.The computational prediction of ionic diffusivities...Ion transport in materials is routinely probed through several experimental techniques,which introduce variability in reported ionic diffusivities and conductivities.The computational prediction of ionic diffusivities and conductivities helps in identifying good ionic conductors,and suitable solid electrolytes(SEs),thus establishing firm structure-property relationships.Machine-learned potentials are an attractive strategy to extend the capabilities of accurate ab initio molecular dynamics(AIMD)to longer simulations for larger systems,enabling the study of ion transport at lower temperatures.However,machine-learned potentials being in their infancy,critical assessments of their predicting capabilities are rare.Here,we identified the main factors controlling the quality of a machine-learning potential based on the moment tensor potential formulation,when applied to the properties of ion transport in ionic conductors,such as SEs.Our results underline the importance of high-quality and diverse training sets required to fit moment tensor potentials.We highlight the importance of considering intrinsic defects which may occur in SEs.We demonstrate the limitations posed by short-timescale and high-temperature AIMD simulations to predict the room-temperature properties of materials.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delaminat...Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delamination of the interface due to cyclic stress still need to be addressed.The solid-state lithium-ion conductor Li_(0.33)La_(0.56)TiO_(3)(LLTO) was prepared via a hydrothermal route by using CTAB as templates in this paper.Perovskite LLTO with micro-porous channels was obtained and the total conductivity is comparable to the non-porous LLTO.Porous LLTO pellets are infiltrated with the non-porous LLTO precursor solution,and the total conductivities of the infiltrated porous LLTO are all higher than those without infiltration.After infiltration,the porous LLTO calcined at 600℃ achieves the highest total conductivity,7.88×10^(-5) S/cm.The fracture toughness of the infiltrated LLTO is higher than that of the non-porous LLTO.The results demonstrate a new way to prepare solid-state lithium-ion conductors with high ionic conductivity and great tolerance to cyclic stress.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
A solid state reaction method was used to prepare the perovskite-structured compounds BaZrl-xYxO3-a (x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The X-ray diffraction (XRD) pattern indicated that the target perovsldte ...A solid state reaction method was used to prepare the perovskite-structured compounds BaZrl-xYxO3-a (x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The X-ray diffraction (XRD) pattern indicated that the target perovsldte phases were obtained. With increasing Y con- centration the unit cell parameters of BaZrl-xYxO3-a samples were expanded, and Y doping became more difficult. However, high synthesis temperature is helpful to promote Y doping. The SEM results showed that the samples exhibited poor sinterability with in- creasing Y-doping content. Thermal gravimetric (TG) curves analysis showed the more mass decreasing of BaZrl-xYxO3-a (0≤x≤0.3) samples at high temperature with more Y doping and more proton introducing. The electrochemical impedance spectra (EIS) of specimens showed that conductivities of BaZrl_xYxO3(0≤x≤0.3) increased with increasing temperature from 300 to 900 ℃ in wet air. At 900 ℃, the conductivity of BaZrl-xYxO3-a (0≤x≤0.3) first increased with increasing doped amount of Y, and reached the high- est value of 1.07x 104 S/cm when x was 0.2, then decreased gradually with further increasing Y content. At 600 ℃, BaZr0.75Y0.2503-a displayed the highest conductivity, while the conductivity of BaZro.rYo.303-a was the highest at 300 ℃. The results indicated that there should be an optimum Y doping concentration yielding the highest conductivity at a constant temperature, and the optimum Y doping concentration should increase in the humidity atmosphere as the temperature decreases. So increasing the Y-doping concen- tration is helpful to improve the conductivities of BaZrl-xYxO3-a materials at low temperature.展开更多
Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes,particularly for application in highenergy lithium metal batteries.With respect to common dual-ion conductors,single-ion...Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes,particularly for application in highenergy lithium metal batteries.With respect to common dual-ion conductors,single-ion conducting polymer electrolytes(SICPEs)are less affected by lithium dendrites growth and thus are particularly interesting for application in lithium metal batteries.In this work,novel SIC-PEs are developed,based on an ionomer having poly(ethylene-alt-maleimide)backbone and lithium phenylsulfonyl(trifluoromethanesulfonyl)imide pendant moieties,further blended with poly(ethylene oxide)(PEO)and poly(ethylene glycol)dimethyl ether(PEGDME).These SIC-PEs exhibit ionic conductivity around~7×10^(−6)S·cm^(−1) at 70℃,lithium transference number close to unity,and excellent mechanical properties,with fracture toughness over 30 J·cm^(−3).Additionally,the electrolytes show very high resistance against lithium dendrites growth,by cycling for more than 1200 h in Li°symmetric cells at a current density of 0.1 mA·cm^(−2).LiFePO4||Li°cells with these SIC-PEs were cycled at 70℃ and C/10,showing initial capacity of almost 160 mAh·g^(−1)and residual capacity of 45%after 100 cycles.This work shows that single-ion conducting polymer electrolytes based on poly(ethylene-alt-maleimide)backbone are promising materials for application as electrolytes or catholytes in lithium metal polymer batteries.展开更多
基金We acknowledge financial support from the National Natural Science Foundation of China(21835003,21674050,91833304,21805136 and 61904084)the National Key Basic Research Program of China(2023YFB3608904,2017YFB0404501 and 2014CB648300)+8 种基金the Natural Science Foundation of Jiangsu Province(BK20210601,BE2019120 and BK20190737)Program for Jiangsu Specially-Appointed Professor(RK030STP15001)the Six Talent Peaks Project of Jiangsu Province(TD-XCL-009)the 333 Project of Jiangsu Province(BRA2017402),the NUPT"1311 Project"and Scientific Foundation(NY219159,NY218164 and NY219020)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of China,the Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions(TJ217038)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,YX030003)Special Fund of"Jiangsu Provincial High-level Innovative and Entrepreneurial Talents Introduction Program"(the first batch)in 2020(Doctoral Aggregation Program)(CZ030SC20016)China Postdoctoral Science Foundation(2021M691652)Jiangsu Province Postdoctoral Science Foundation(2021K323C).
文摘Stretchable power sources,especially stretchable lithium-ion batteries(LIBs),have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics.Despite recent advances,it is still challenging to develop ultra-stretchable LIBs that can withstand large deformation.In particular,stretchable LIBs require an elastic electrolyte as a basic component,while the conductivity of most elastic electrolytes drops sharply during deformation,especially during large deformations.This is why highly stretchable LIBs have not yet been realized until now.As a proof of concept,a super-stretchable LIB with strain up to 1200%is created based on an intrinsically super-stretchable polymer electrolyte as the lithium-ion conductor.The super-stretchable conductive system is constructed by an effective diblock copolymerization strategy via photocuring of vinyl functionalized 2-ureido-4-pyrimidone(VFUpy),an acrylic monomer containing succinonitrile and a lithium salt,achieving high ionic conductivity(3.5×10^(-4)mS cm^(-1)at room temperature(RT))and large deformation(the strain can reach 4560%).The acrylic elastomer containing Li-ion conductive domains can strongly increase the compatibility between the neighboring elastic networks,resulting in high ionic conductivity under ultra-large deformation,while VFUpy increases elasticity modulus(over three times)and electrochemical stability(voltage window reaches 5.3 V)of the prepared polymer conductor.At a strain of up to 1200%,the resulting stretchable LIBs are still sufficient to power LEDs.This study sheds light on the design and development of high-performance intrinsically super-stretchable materials for the advancement of highly elastic energy storage devices for powering flexible/wearable electronics that can endure large deformation.
基金supported by National Key R&D Program of China (2023YFB3608904)the National Natural Science Foundation of China (62004106, 62274097, 21835003, 62005126)+7 种基金the Natural Science Foundation of Jiangsu Province (BE2019120,BK20210601)the Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province (2023FE002)Program for Jiangsu Specially-Appointed Professors (RK030STP15001)the Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions (TJ217038)the Six Talent Peaks Project of Jiangsu Province (TD-XCL-009)the 333 Project of Jiangsu Province (BRA2017402)the Project of State Key Laboratory of Organic Electronics and Information Displays,NJUPT (GZR2023-010016)Natural Science Foundation of NJUPT (NY223079)。
文摘Covalent organic frameworks(COFs) are attractive porous crystalline materials with extremely high stability, easy functionalization, and open channels, which are expected to be unique ion conductors/transporters in lithium ion batteries(LIBs). Despite recent advances, low ion conductivity and low transference number, resulting in low charging/discharging rate, low energy density, and short battery life, are the main issues that limit their direct application as solid electrolytes in LIBs. Here, we designed and synthesized a novel polyimide COF, namely, TAPA-PDI-COF, with abundant C=O groups, which has been successfully employed as high-performance solid electrolytes by doping TAPA-PDI-COF and succinonitrile(SN). Both the well-defined nanochannels of COFs and SN confined in the well-aligned channels restricted the free migration of anions, while C=O on COFs and CN groups of SN enhanced Li^(+) transport, thus achieving a high ion conductivity of 0.102 m S cm^(-1)at 80 °C and a high lithium-ion transference number of 0.855 at room temperature. According to density functional theory(DFT)calculations, Li-ion migration mainly adopted in-plane transport rather than the axial pathway, which may be due to the shorter hopping distances in the planar pathway. The results suggest an effective strategy for the design and development of all-solidstate ionic conductors for achieving high-performance LIBs.
基金the National Research Foundation under his NRF Fellowship NRFF12-2020-0012support from the Singapore Ministry of Education Academic Fund Tier 1(R-284-000-186-133).
文摘Ion transport in materials is routinely probed through several experimental techniques,which introduce variability in reported ionic diffusivities and conductivities.The computational prediction of ionic diffusivities and conductivities helps in identifying good ionic conductors,and suitable solid electrolytes(SEs),thus establishing firm structure-property relationships.Machine-learned potentials are an attractive strategy to extend the capabilities of accurate ab initio molecular dynamics(AIMD)to longer simulations for larger systems,enabling the study of ion transport at lower temperatures.However,machine-learned potentials being in their infancy,critical assessments of their predicting capabilities are rare.Here,we identified the main factors controlling the quality of a machine-learning potential based on the moment tensor potential formulation,when applied to the properties of ion transport in ionic conductors,such as SEs.Our results underline the importance of high-quality and diverse training sets required to fit moment tensor potentials.We highlight the importance of considering intrinsic defects which may occur in SEs.We demonstrate the limitations posed by short-timescale and high-temperature AIMD simulations to predict the room-temperature properties of materials.
基金supported by the Basic Science Research Program(No.RS-2024-00344021)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and future Planning,the financial support from the National Natural Science Foundation of China(52103277)+2 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT015)Natural Science Foundation of Henan Province(242300421073).This work was also supported by the Technology Innovation Program(20010960)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金Project supported by the Natural Science Foundation of Hebei Province,China(E2021502013)Key Research and Development Projects of Hebei Province.China(21373805D)。
文摘Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delamination of the interface due to cyclic stress still need to be addressed.The solid-state lithium-ion conductor Li_(0.33)La_(0.56)TiO_(3)(LLTO) was prepared via a hydrothermal route by using CTAB as templates in this paper.Perovskite LLTO with micro-porous channels was obtained and the total conductivity is comparable to the non-porous LLTO.Porous LLTO pellets are infiltrated with the non-porous LLTO precursor solution,and the total conductivities of the infiltrated porous LLTO are all higher than those without infiltration.After infiltration,the porous LLTO calcined at 600℃ achieves the highest total conductivity,7.88×10^(-5) S/cm.The fracture toughness of the infiltrated LLTO is higher than that of the non-porous LLTO.The results demonstrate a new way to prepare solid-state lithium-ion conductors with high ionic conductivity and great tolerance to cyclic stress.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金Project supported by National Natural Science Foundation of China (51074038, 51274057) and National High Technology Research and Development Program of China (2013AA030902)
文摘A solid state reaction method was used to prepare the perovskite-structured compounds BaZrl-xYxO3-a (x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The X-ray diffraction (XRD) pattern indicated that the target perovsldte phases were obtained. With increasing Y con- centration the unit cell parameters of BaZrl-xYxO3-a samples were expanded, and Y doping became more difficult. However, high synthesis temperature is helpful to promote Y doping. The SEM results showed that the samples exhibited poor sinterability with in- creasing Y-doping content. Thermal gravimetric (TG) curves analysis showed the more mass decreasing of BaZrl-xYxO3-a (0≤x≤0.3) samples at high temperature with more Y doping and more proton introducing. The electrochemical impedance spectra (EIS) of specimens showed that conductivities of BaZrl_xYxO3(0≤x≤0.3) increased with increasing temperature from 300 to 900 ℃ in wet air. At 900 ℃, the conductivity of BaZrl-xYxO3-a (0≤x≤0.3) first increased with increasing doped amount of Y, and reached the high- est value of 1.07x 104 S/cm when x was 0.2, then decreased gradually with further increasing Y content. At 600 ℃, BaZr0.75Y0.2503-a displayed the highest conductivity, while the conductivity of BaZro.rYo.303-a was the highest at 300 ℃. The results indicated that there should be an optimum Y doping concentration yielding the highest conductivity at a constant temperature, and the optimum Y doping concentration should increase in the humidity atmosphere as the temperature decreases. So increasing the Y-doping concen- tration is helpful to improve the conductivities of BaZrl-xYxO3-a materials at low temperature.
文摘Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes,particularly for application in highenergy lithium metal batteries.With respect to common dual-ion conductors,single-ion conducting polymer electrolytes(SICPEs)are less affected by lithium dendrites growth and thus are particularly interesting for application in lithium metal batteries.In this work,novel SIC-PEs are developed,based on an ionomer having poly(ethylene-alt-maleimide)backbone and lithium phenylsulfonyl(trifluoromethanesulfonyl)imide pendant moieties,further blended with poly(ethylene oxide)(PEO)and poly(ethylene glycol)dimethyl ether(PEGDME).These SIC-PEs exhibit ionic conductivity around~7×10^(−6)S·cm^(−1) at 70℃,lithium transference number close to unity,and excellent mechanical properties,with fracture toughness over 30 J·cm^(−3).Additionally,the electrolytes show very high resistance against lithium dendrites growth,by cycling for more than 1200 h in Li°symmetric cells at a current density of 0.1 mA·cm^(−2).LiFePO4||Li°cells with these SIC-PEs were cycled at 70℃ and C/10,showing initial capacity of almost 160 mAh·g^(−1)and residual capacity of 45%after 100 cycles.This work shows that single-ion conducting polymer electrolytes based on poly(ethylene-alt-maleimide)backbone are promising materials for application as electrolytes or catholytes in lithium metal polymer batteries.