Taking the fluid temperature distribution along the borehole depth into account, a new quasi-three-dimensional model for vertical ground heat exchangers has been established, which provides a better understanding of t...Taking the fluid temperature distribution along the borehole depth into account, a new quasi-three-dimensional model for vertical ground heat exchangers has been established, which provides a better understanding of the heat transfer processes in the geothermal heat exchangers. On this basis the efficiency of the borehole has been defined and its analytical expression derived. Comparison with the previous two-dimensional model shows that the quasi-three-dimensional model is more rational and more accurate to depict the practical feature of the conduction of geothermal heat exchanger, and the efficiency notion can be easily used to determine the inlet and outlet temperature of the circulating fluid inside the heat exchanger.展开更多
The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are i...The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.展开更多
In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition...In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.展开更多
The meshless weighted least-squares (MWLS) method is a pure meshless method that com- bines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elas...The meshless weighted least-squares (MWLS) method is a pure meshless method that com- bines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method possesses several advantages, such as high accuracy, high convergence rate, good stability, and high com- putational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat transfer problems.展开更多
A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem...A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.展开更多
文摘Taking the fluid temperature distribution along the borehole depth into account, a new quasi-three-dimensional model for vertical ground heat exchangers has been established, which provides a better understanding of the heat transfer processes in the geothermal heat exchangers. On this basis the efficiency of the borehole has been defined and its analytical expression derived. Comparison with the previous two-dimensional model shows that the quasi-three-dimensional model is more rational and more accurate to depict the practical feature of the conduction of geothermal heat exchanger, and the efficiency notion can be easily used to determine the inlet and outlet temperature of the circulating fluid inside the heat exchanger.
基金supported by the National Natural Science Foundation of China (Grant No. 50974125)the National Basic Research Program of China ("973" Project) (Grant Nos.2010CB226804,2002CB412705)the Beijing Key Laboratory Projects
文摘The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.
基金This work has been supported by the National Natural Science Foundation of China (10162002) and Foundation for University Key Teacher by the Ministry of Education and The Yunnan Foundation of Natural Science (1999A0023M).
文摘In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.
基金Supported by the National Natural Science Foundation of China(No. 10172052)
文摘The meshless weighted least-squares (MWLS) method is a pure meshless method that com- bines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method possesses several advantages, such as high accuracy, high convergence rate, good stability, and high com- putational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat transfer problems.
文摘A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.