In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami...In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.展开更多
It is shown that the mean value of the capacitive current arising in the p-n-junction in a microwave field is zero, and the average value of the active current independently of the current value is different from zero...It is shown that the mean value of the capacitive current arising in the p-n-junction in a microwave field is zero, and the average value of the active current independently of the current value is different from zero and is equal to the current generated by the diode.展开更多
The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which posses...The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.展开更多
基金Project supported by the National Natural Sciences Foundation of China (Nos. 10132010 and 90405005).
文摘In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.
文摘It is shown that the mean value of the capacitive current arising in the p-n-junction in a microwave field is zero, and the average value of the active current independently of the current value is different from zero and is equal to the current generated by the diode.
文摘The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.