期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Laplace小波和改进卷积神经网络的压裂车动力端轴承故障识别
被引量:
1
1
作者
林华钊
王迪
鲁国阳
《机电工程》
CAS
北大核心
2023年第5期691-698,共8页
在强背景噪声工况下,压裂车动力端轴承振动信号故障特征较微弱,导致轴承故障诊断的准确率较低。针对这一问题,提出了一种基于改进Laplace小波(ELW)和改进卷积神经网络(ECNN)的压裂车动力端轴承故障识别方法。首先,采用了一种Laplace小...
在强背景噪声工况下,压裂车动力端轴承振动信号故障特征较微弱,导致轴承故障诊断的准确率较低。针对这一问题,提出了一种基于改进Laplace小波(ELW)和改进卷积神经网络(ECNN)的压裂车动力端轴承故障识别方法。首先,采用了一种Laplace小波振荡频率参数选取策略,使Laplace小波搜寻到了最佳频率参数;然后,采用改进Laplace小波,对采集到的压裂车动力端轴承故障振动信号进行了降噪处理,并在卷积神经网络(CNN)的基础上引入了自注意力机制和编码器、解码器结构,设计出了改进卷积神经网络(ECNN)模型;最后,将压裂车动力端轴承降噪后的信号输入改进卷积神经网络,进行了自动特征提取和故障识别;为了验证该方法的有效性和先进性,将其与其他方法(模型)进行了对比分析。研究结果表明:采用基于改进Laplace小波与和改进卷积神经网络的方法(模型),对压裂车动力端轴承故障进行识别的准确率可高达99.67%,单个样本的测试时间仅为0.14 s;在识别准确率、召回率、F1得分和统计检验等方面,与其他方法(模型)相比,基于改进Laplace小波与改进卷积神经网络的组合模型具有更为优秀的故障识别性能。
展开更多
关键词
压裂车
强背景噪声工况
自动特征提取
故障识别
改进Laplace小波
改进卷积神经网络
下载PDF
职称材料
题名
基于改进Laplace小波和改进卷积神经网络的压裂车动力端轴承故障识别
被引量:
1
1
作者
林华钊
王迪
鲁国阳
机构
珠海市技师学院智能制造系
长安大学工程机械学院
三一重型能源装备有限公司
出处
《机电工程》
CAS
北大核心
2023年第5期691-698,共8页
基金
国家自然科学基金资助项目(51509006)。
文摘
在强背景噪声工况下,压裂车动力端轴承振动信号故障特征较微弱,导致轴承故障诊断的准确率较低。针对这一问题,提出了一种基于改进Laplace小波(ELW)和改进卷积神经网络(ECNN)的压裂车动力端轴承故障识别方法。首先,采用了一种Laplace小波振荡频率参数选取策略,使Laplace小波搜寻到了最佳频率参数;然后,采用改进Laplace小波,对采集到的压裂车动力端轴承故障振动信号进行了降噪处理,并在卷积神经网络(CNN)的基础上引入了自注意力机制和编码器、解码器结构,设计出了改进卷积神经网络(ECNN)模型;最后,将压裂车动力端轴承降噪后的信号输入改进卷积神经网络,进行了自动特征提取和故障识别;为了验证该方法的有效性和先进性,将其与其他方法(模型)进行了对比分析。研究结果表明:采用基于改进Laplace小波与和改进卷积神经网络的方法(模型),对压裂车动力端轴承故障进行识别的准确率可高达99.67%,单个样本的测试时间仅为0.14 s;在识别准确率、召回率、F1得分和统计检验等方面,与其他方法(模型)相比,基于改进Laplace小波与改进卷积神经网络的组合模型具有更为优秀的故障识别性能。
关键词
压裂车
强背景噪声工况
自动特征提取
故障识别
改进Laplace小波
改进卷积神经网络
Keywords
fracturing
vehicle
condition
of
strong
background noise
automatic
feature
extraction
fault
identification
enhanced
Laplace
wavelet(ELW)
enhanced
convolutional
neural
network(ECNN)
分类号
TH133.3 [机械工程—机械制造及自动化]
TE934.2 [石油与天然气工程—石油机械设备]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Laplace小波和改进卷积神经网络的压裂车动力端轴承故障识别
林华钊
王迪
鲁国阳
《机电工程》
CAS
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部