期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合RBF神经网络和集对分析的风电功率超短期预测 被引量:8
1
作者 孙勇 李宝聚 +2 位作者 孙志博 李振元 张罗宾 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2020年第5期49-58,共10页
风电功率的随机波动性是制约风电功率预测精度提高的关键问题之一,其中风速波动性以及风电转换不确定性是造成风电功率波动的两个主要原因.本文首先分析在风电功率预测中计及风电场状态的必要性;其次以风机运行状态充当输入变量,采用互... 风电功率的随机波动性是制约风电功率预测精度提高的关键问题之一,其中风速波动性以及风电转换不确定性是造成风电功率波动的两个主要原因.本文首先分析在风电功率预测中计及风电场状态的必要性;其次以风机运行状态充当输入变量,采用互信息理论修正外部NWP风速,引入集对分析对风电场内部状态特征参量进行匹配预测,构建计及风电场运行状态的以一种多输入-单输出的RBF神经网络为核心的风功率预测框架;最后采用吉林省某风电场的实际数据进行分析.对比多种预测算法,通过算例结果表明,所提方法可以有效地提升风电功率预测的精度. 展开更多
关键词 风功率预测 风电场态势预估 风速修正 秩次集对分析 RBF神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部