原子间相互作用势是凝聚态物质在原子尺度上进行计算机模拟的基础,特别是用分子动力学和Monte Carlo方法对凝聚态物质的性质和过程进行模拟时,合适的原子间相互作用势是得到有意义的结果的前提和条件.可依据不同类型的相互作用如共价...原子间相互作用势是凝聚态物质在原子尺度上进行计算机模拟的基础,特别是用分子动力学和Monte Carlo方法对凝聚态物质的性质和过程进行模拟时,合适的原子间相互作用势是得到有意义的结果的前提和条件.可依据不同类型的相互作用如共价键、离子键、金属键和Van der Waals力等构建不同类型的原子间相互作用势,而且同一类型的相互作用也因所处理的性质或过程(如体积、表面、团簇、缺陷等)不同所采用的形式也不相同,这样就构建了大量的各种形式的原子间相互作用势.本文对凝聚态的计算机模拟中常用的原子间相互作用势进行分类介绍和简要的评述.展开更多
Seasonal dynamics of total phenolics (TP), extractable condensed tannins (ECT), protein-bound condensed tannins (PBCT), fiber-bound condensed tannins (FBCT), total condensed tannins (TCT), and protein precipitation ca...Seasonal dynamics of total phenolics (TP), extractable condensed tannins (ECT), protein-bound condensed tannins (PBCT), fiber-bound condensed tannins (FBCT), total condensed tannins (TCT), and protein precipitation capacity (PPC) in young, mature and senescent branchlets of Casuarina equisetifolia were studied at Chishan Forestry Center of Dongshan County, Fujian Province, China. In addition, nitrogen contents of branchlets at the different developmental stages were also determined. The contents of TP and ECT, and PPC in young branchlets were significantly higher than those in mature and senescent branchlets through the season. However, PBCT contents were significantly higher in senescent branchlets than those in young and mature branchlets; FBCT fluctuated with season. Young branchlets had the highest N content, which decreased during branch maturity and senescence. The highest contents of TP and the lowest contents of TCT and N in young and mature branchlets were observed in summer. There was a significant negative correlation between TP and N contents. In contrast, TCT contents were positively correlated to N contents. Nutrient resorption during senescence and high TCT:N ratios in senescent branchlets are the important nutrient conservation strategies for C. equisetifolia.展开更多
Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the...Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed.In particular,the focus is put on recent developments of attosecond dynamics of charge,exciton,and magnetism.New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted.Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed.These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers,laser medical engineering,and ultrafast electronic devices.展开更多
The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at roo...The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature.In the past few decades,a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged,which has led to the realization of various fascinating phenomena and practical applications.This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature,and includes a comprehensive theoretical background,descriptions of intriguing phenomena observed in various physical systems,as well as accounts of optoelectronic applications.Specifically,an in-depth review of physical systems achieving room temperature exciton polaritons will be presented,including the early development of ZnO and GaN microcavities and other emerging systems such as organics,halide perovskite semiconductors,carbon nanotubes,and transition metal dichalcogenides.Finally,a perspective of outlooking future developments will be elaborated.展开更多
This paper introduced supersonic expansion liquefaction technology into the field of hydrogen liquefaction.The mathematical model for supersonic condensation of hydrogen gas in a Laval nozzle model was established.The...This paper introduced supersonic expansion liquefaction technology into the field of hydrogen liquefaction.The mathematical model for supersonic condensation of hydrogen gas in a Laval nozzle model was established.The supersonic expansion and condensation characteristics of hydrogen gas under different temperature conditions were investigated.The simulation results show that the droplet number rises rapidly from 0 at the nozzle throat as the inlet temperature increases,and the maximum droplet number generated is 1.339×10^(18)kg^(-1)at inlet temperature of 36.0 K.When hydrogen nucleation occurs,the droplet radius increases significantly and shows a positive correlation with the increase in the inlet temperature,and the maximum droplet radii are 6.667×10^(-8)m,1.043×10^(-7)m,and 1.099×10^(-7)m when the inlet temperature is 36.0 K,36.5 K,and 37.0 K,respectively.The maximum nucleation rate decreases with increasing inlet temperature,and the nucleation region of the Laval nozzle becomes wider.The liquefaction efficiency can be effectively improved by lowering the inlet temperature.This is because a lower inlet temperature provides more subcooling,which allows the hydrogen to reach the thermodynamic conditions required for large-scale condensation more quickly.展开更多
The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation...The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation is derived. Unlike the interaction between solitons of the same species, it is independent of the phase difference between solitons. It may be of attraction or repulsion. In the former case, each soliton will oscillate about and pass through each other around the mass-center of the system, which will also oscillate harmonically due to the harmonic trapping potential.展开更多
文摘原子间相互作用势是凝聚态物质在原子尺度上进行计算机模拟的基础,特别是用分子动力学和Monte Carlo方法对凝聚态物质的性质和过程进行模拟时,合适的原子间相互作用势是得到有意义的结果的前提和条件.可依据不同类型的相互作用如共价键、离子键、金属键和Van der Waals力等构建不同类型的原子间相互作用势,而且同一类型的相互作用也因所处理的性质或过程(如体积、表面、团簇、缺陷等)不同所采用的形式也不相同,这样就构建了大量的各种形式的原子间相互作用势.本文对凝聚态的计算机模拟中常用的原子间相互作用势进行分类介绍和简要的评述.
基金Project supported by the National Eleventh Five-year Key Project(No.2006BAD03A14-01)Fujian Provincial Major Special Program of Science and Technology(No.2006NZ0001-2)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0725)the Program for Innovative Research Team in Science and Technology in Fujian Province University,China
文摘Seasonal dynamics of total phenolics (TP), extractable condensed tannins (ECT), protein-bound condensed tannins (PBCT), fiber-bound condensed tannins (FBCT), total condensed tannins (TCT), and protein precipitation capacity (PPC) in young, mature and senescent branchlets of Casuarina equisetifolia were studied at Chishan Forestry Center of Dongshan County, Fujian Province, China. In addition, nitrogen contents of branchlets at the different developmental stages were also determined. The contents of TP and ECT, and PPC in young branchlets were significantly higher than those in mature and senescent branchlets through the season. However, PBCT contents were significantly higher in senescent branchlets than those in young and mature branchlets; FBCT fluctuated with season. Young branchlets had the highest N content, which decreased during branch maturity and senescence. The highest contents of TP and the lowest contents of TCT and N in young and mature branchlets were observed in summer. There was a significant negative correlation between TP and N contents. In contrast, TCT contents were positively correlated to N contents. Nutrient resorption during senescence and high TCT:N ratios in senescent branchlets are the important nutrient conservation strategies for C. equisetifolia.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400200)the National Natural Science Foundation of China(Grant Nos.12025407,92250303,and 11934003)+3 种基金Chinese Academy of Sciences(Grant Nos.YSBR047 and XDB330301)financial support from the National Science Fund for Distinguished Young Scholars(Grant No.12304096)China Postdoctoral Science Foundation(Grant No.2022TQ0362)Special Research Assistant of Chinese Academy of Sciences Foundation。
文摘Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed.In particular,the focus is put on recent developments of attosecond dynamics of charge,exciton,and magnetism.New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted.Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed.These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers,laser medical engineering,and ultrafast electronic devices.
基金Project supported by the National Major Fundamental Research Program of China (2007CB925001)National Key Fundamental Research Development Planning Program of China (001CB610604)Natural Science Research Program of Education Department of Anhui Province (2006KJ266B, ZD2007003-1)
基金Q.Xiong gratefully acknowledges funding support from the National Natural Science Foundation of China(12020101003)the State Key Laboratory of Low-Dimensional Quantum Physics at Tsinghua University.S.Ghosh gratefully acknowledges the support from the Excellent Young Scientists Fund Program(Overseas)of the National Natural Science Foundation of China.R.Su and T.Liew gratefully acknowledge the funding support from Nanyang Technological University via a start-up grant and the Singapore Ministry of Education via the AcRF Tier 3 Programme“Geometrical Quantum Materials”(MOE2018-T3-1-002).
文摘The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature.In the past few decades,a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged,which has led to the realization of various fascinating phenomena and practical applications.This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature,and includes a comprehensive theoretical background,descriptions of intriguing phenomena observed in various physical systems,as well as accounts of optoelectronic applications.Specifically,an in-depth review of physical systems achieving room temperature exciton polaritons will be presented,including the early development of ZnO and GaN microcavities and other emerging systems such as organics,halide perovskite semiconductors,carbon nanotubes,and transition metal dichalcogenides.Finally,a perspective of outlooking future developments will be elaborated.
基金supported by the National Natural Science Foundation of China(U2241257)the Postdoctoral Science Foundation of China(2022M723497)。
文摘This paper introduced supersonic expansion liquefaction technology into the field of hydrogen liquefaction.The mathematical model for supersonic condensation of hydrogen gas in a Laval nozzle model was established.The supersonic expansion and condensation characteristics of hydrogen gas under different temperature conditions were investigated.The simulation results show that the droplet number rises rapidly from 0 at the nozzle throat as the inlet temperature increases,and the maximum droplet number generated is 1.339×10^(18)kg^(-1)at inlet temperature of 36.0 K.When hydrogen nucleation occurs,the droplet radius increases significantly and shows a positive correlation with the increase in the inlet temperature,and the maximum droplet radii are 6.667×10^(-8)m,1.043×10^(-7)m,and 1.099×10^(-7)m when the inlet temperature is 36.0 K,36.5 K,and 37.0 K,respectively.The maximum nucleation rate decreases with increasing inlet temperature,and the nucleation region of the Laval nozzle becomes wider.The liquefaction efficiency can be effectively improved by lowering the inlet temperature.This is because a lower inlet temperature provides more subcooling,which allows the hydrogen to reach the thermodynamic conditions required for large-scale condensation more quickly.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10775049)the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6008)
文摘The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation is derived. Unlike the interaction between solitons of the same species, it is independent of the phase difference between solitons. It may be of attraction or repulsion. In the former case, each soliton will oscillate about and pass through each other around the mass-center of the system, which will also oscillate harmonically due to the harmonic trapping potential.