接头是沉管隧道中最薄弱的一环,在受到地震和不均匀沉降等作用下,接头会发生横向变形,并通过接头中的剪力键传递。目前,国内外沉管隧道管节接头变形规律的研究较少集中在剪力键上,更缺少管节接头整体力学性能试验数据的支持。根据沉管...接头是沉管隧道中最薄弱的一环,在受到地震和不均匀沉降等作用下,接头会发生横向变形,并通过接头中的剪力键传递。目前,国内外沉管隧道管节接头变形规律的研究较少集中在剪力键上,更缺少管节接头整体力学性能试验数据的支持。根据沉管隧道接头构造设计特点,该文提出了一套测试接头压剪承载力和破坏模式的破坏试验方法和加载方案,并开展了几何比尺为1∶10的管节接头压剪试验,研究接头在低周往复剪切荷载下的力学性能,记录其荷载-位移曲线,最终获得接头压剪刚度曲线。试验结果表明,管节接头和单个剪力键的承载力分别是310 k N/355 k N(正/负向)和88 k N,均比设计承载力高。而接头剪力键的破坏模式主要表现为局部翘曲破坏和凸榫根部拉裂破坏。展开更多
Precast segmental construction has been recently developed to reduce the construction cost and shorten the construction term as compared to the cast-in-place method in a will to establish the design and erection syste...Precast segmental construction has been recently developed to reduce the construction cost and shorten the construction term as compared to the cast-in-place method in a will to establish the design and erection system of structures using Ultra High Performance Concrete (UHPC). However, this method requires the presence of segmental joints to transfer the loads between neighboring segments, which stresses the importance of securing structural safety and serviceability. Therefore, need is for research on the behavior of the segmental joint for the structures erected by the precast segmental construction method. To that goal, this paper presents an experimental study on the behavior of shear keys with respect to the curing time of UHPC in the segmental joint. Analysis is done on the load-displacement relation according to the curing time of the shear keys and on the failure modes of the shear keys according to the cracking pattern at failure.展开更多
文摘接头是沉管隧道中最薄弱的一环,在受到地震和不均匀沉降等作用下,接头会发生横向变形,并通过接头中的剪力键传递。目前,国内外沉管隧道管节接头变形规律的研究较少集中在剪力键上,更缺少管节接头整体力学性能试验数据的支持。根据沉管隧道接头构造设计特点,该文提出了一套测试接头压剪承载力和破坏模式的破坏试验方法和加载方案,并开展了几何比尺为1∶10的管节接头压剪试验,研究接头在低周往复剪切荷载下的力学性能,记录其荷载-位移曲线,最终获得接头压剪刚度曲线。试验结果表明,管节接头和单个剪力键的承载力分别是310 k N/355 k N(正/负向)和88 k N,均比设计承载力高。而接头剪力键的破坏模式主要表现为局部翘曲破坏和凸榫根部拉裂破坏。
文摘Precast segmental construction has been recently developed to reduce the construction cost and shorten the construction term as compared to the cast-in-place method in a will to establish the design and erection system of structures using Ultra High Performance Concrete (UHPC). However, this method requires the presence of segmental joints to transfer the loads between neighboring segments, which stresses the importance of securing structural safety and serviceability. Therefore, need is for research on the behavior of the segmental joint for the structures erected by the precast segmental construction method. To that goal, this paper presents an experimental study on the behavior of shear keys with respect to the curing time of UHPC in the segmental joint. Analysis is done on the load-displacement relation according to the curing time of the shear keys and on the failure modes of the shear keys according to the cracking pattern at failure.