Artificial intelligence(AI) enables machines to provide unparalleled value in a myriad of industries and applications. In recent years, researchers have harnessed artificial intelligence to analyze large-volume, unstr...Artificial intelligence(AI) enables machines to provide unparalleled value in a myriad of industries and applications. In recent years, researchers have harnessed artificial intelligence to analyze large-volume, unstructured medical data and perform clinical tasks, such as the identification of diabetic retinopathy or the diagnosis of cutaneous malignancies. Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning, are beginning to emerge in gastrointestinal endoscopy. The most promising of these efforts have been in computeraided detection and computer-aided diagnosis of colorectal polyps, with recent systems demonstrating high sensitivity and accuracy even when compared to expert human endoscopists. AI has also been utilized to identify gastrointestinal bleeding, to detect areas of inflammation, and even to diagnose certain gastrointestinal infections. Future work in the field should concentrate on creating seamless integration of AI systems with current endoscopy platforms and electronic medical records, developing training modules to teach clinicians how to use AI tools, and determining the best means for regulation and approval of new AI technology.展开更多
BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algor...BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liv展开更多
文摘Artificial intelligence(AI) enables machines to provide unparalleled value in a myriad of industries and applications. In recent years, researchers have harnessed artificial intelligence to analyze large-volume, unstructured medical data and perform clinical tasks, such as the identification of diabetic retinopathy or the diagnosis of cutaneous malignancies. Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning, are beginning to emerge in gastrointestinal endoscopy. The most promising of these efforts have been in computeraided detection and computer-aided diagnosis of colorectal polyps, with recent systems demonstrating high sensitivity and accuracy even when compared to expert human endoscopists. AI has also been utilized to identify gastrointestinal bleeding, to detect areas of inflammation, and even to diagnose certain gastrointestinal infections. Future work in the field should concentrate on creating seamless integration of AI systems with current endoscopy platforms and electronic medical records, developing training modules to teach clinicians how to use AI tools, and determining the best means for regulation and approval of new AI technology.
基金Supported by the College of Medicine Research Centre,Deanship of Scientific Research,King Saud University,Riyadh,Saudi Arabia
文摘BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liv