针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据...针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。展开更多
多重信号分类(multiple signal classification,MUSIC)方法在少快拍数或者存在相干信源的情况下不能准确估计信号的波达方向,而压缩感知(compressive sensing,CS)方法在多快拍数或低信噪比情况下分辨性能不稳定,估计准确率受限。提出了...多重信号分类(multiple signal classification,MUSIC)方法在少快拍数或者存在相干信源的情况下不能准确估计信号的波达方向,而压缩感知(compressive sensing,CS)方法在多快拍数或低信噪比情况下分辨性能不稳定,估计准确率受限。提出了一种基于CS的MUSIC方法,简称CS-MUSIC,该方法针对不同的快拍数,建立二者之间的联系,构造出新的正交空间,获得尖锐的谱峰。理论分析和仿真结果表明,所提方法在不同快拍数条件下,具有较高的估计精度,克服了传统方法存在的缺陷,并且对噪声具有鲁棒性。展开更多
提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观...提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。展开更多
文摘针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。
文摘多重信号分类(multiple signal classification,MUSIC)方法在少快拍数或者存在相干信源的情况下不能准确估计信号的波达方向,而压缩感知(compressive sensing,CS)方法在多快拍数或低信噪比情况下分辨性能不稳定,估计准确率受限。提出了一种基于CS的MUSIC方法,简称CS-MUSIC,该方法针对不同的快拍数,建立二者之间的联系,构造出新的正交空间,获得尖锐的谱峰。理论分析和仿真结果表明,所提方法在不同快拍数条件下,具有较高的估计精度,克服了传统方法存在的缺陷,并且对噪声具有鲁棒性。
文摘提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。