期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
三氯蔗糖微胶囊的制备与工艺优化
1
作者 陈楚雄 阮伟 +2 位作者 陈伟 杨明 李曼曼 《包装学报》 2024年第1期64-74,共11页
为延缓三氯蔗糖甜味特性,采用微胶囊技术对三氯蔗糖进行包埋处理。选择大豆分离蛋白和海藻酸钠为壁材,三氯蔗糖为芯材,采用复合凝聚法制备三氯蔗糖微胶囊。以微胶囊产率为评价指标,利用单因素试验和响应面优化法确定最佳制备条件,并对... 为延缓三氯蔗糖甜味特性,采用微胶囊技术对三氯蔗糖进行包埋处理。选择大豆分离蛋白和海藻酸钠为壁材,三氯蔗糖为芯材,采用复合凝聚法制备三氯蔗糖微胶囊。以微胶囊产率为评价指标,利用单因素试验和响应面优化法确定最佳制备条件,并对其形态等进行表征。研究结果表明,微胶囊的最佳制备工艺:复凝聚pH值为3.01,芯壁质量比为1.27,大豆分离蛋白和海藻酸钠的质量比为3.01,壁材质量浓度为0.0304 g/mL。按此工艺条件制备的三氯蔗糖微胶囊呈完整球形,表面光滑平整,粒径约为50μm,产率可达75.19%。 展开更多
关键词 三氯蔗糖 微胶囊 复合凝聚法 响应面法
下载PDF
Thermodynamic Simulation of CCP in Air-Cooled Heat Pump Unit with HFCs and CO<sub>2</sub>Trans-Critical 被引量:2
2
作者 Feihu Chen Shuguang Liao Guangcai Gong 《Journal of Power and Energy Engineering》 2018年第9期141-164,共24页
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ... The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2. 展开更多
关键词 Air-Cooled Heat Pump Unit compound condensation Process (CCP) Exergy Analysis method Sanitary Hot Water MATLAB/SIMULINK Software Fluorine SUBSTITUTE REFRIGERANT R407C/R410A Natural REFRIGERANT CO2
下载PDF
Condensing Heat Recovery of Centrifugal Chiller
3
作者 GONG Guang-cai,JIAO Jun-jun,WANG Li-ping,ZENG Wei(College of Civil Engineering,Hunan University,Changsha,Hunan 410082,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期123-126,共4页
To a kind of centrifugal water chiller with R22 and about 1 745 kW of cooling capacity,a heat exchanger was added between the outlet of compressor and original condenser to get part of or all the condensing heat.Conde... To a kind of centrifugal water chiller with R22 and about 1 745 kW of cooling capacity,a heat exchanger was added between the outlet of compressor and original condenser to get part of or all the condensing heat.Condensing heat can be recovered by compound condensing method,which adopts air-cooling model +water-cooling model or water-cooling model +water-cooling model at the condensing side of the system.By exergy analysis and experiment research on compound condensing heat recovery of centrifugal chiller,the results are obtained that the capability of the whole system increases,the energy efficiency ratio(EER)becomes 3.2~5.0 from 2.2~3.4,which implies the EER increases about 1.0~1.5,the exergy efficiency increases about 10%,and the chiller runs more stably after reformation. 展开更多
关键词 CENTRIFUGAL CHILLER condensing HEAT RECOVERY compound condensing method EER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部