In thermal barrier coatings (TBC), ceramics is covered on the metal matrix as coatings in order to raise its temperature endurance. Today most of the TBCs are of the double-layer-structure of Ni base heat-resistant al...In thermal barrier coatings (TBC), ceramics is covered on the metal matrix as coatings in order to raise its temperature endurance. Today most of the TBCs are of the double-layer-structure of Ni base heat-resistant alloy matrix+the bonding layer of MCrAIY alloy (M=Ni, Co, Ni+Co) +ZrO2. In this paper, the concept of interface conjunction factor (ICF) in the biphase interface of alloys is expanded to coatings. The ICFs of the interface between the ceramics and the bonding layers with various compositions, such as the electron density ρ, the electron density difference Δρ, and the number of atom state group which keeps the electron density continuous δ are calculated. From the calculation results, the following estimations can be deduced. When Al content is less than 6 wt% it improves the mechanical properties of the coatings; when the content is 6 wt%–12 wt% it will not worsen the properties; when the content is greater than 12 wt% it will have disadvantageous effect. The estimations accord well with the experiment results of the properties and the service time of the coatings. Therefore the concept of ICF has the same important meaning in coatings, and the valence electron structure of the interface can be a possible theoretical guide for the content optimization of TBCs.展开更多
Rechargeable aqueous zinc-based batteries(RAZBs)are rapidly developing as very promising energy storage devices for both grid-scale and portable applications,thanks to their inherent safety,cost effectiveness,environm...Rechargeable aqueous zinc-based batteries(RAZBs)are rapidly developing as very promising energy storage devices for both grid-scale and portable applications,thanks to their inherent safety,cost effectiveness,environmental friendliness,and competitive energy density.Increasing efforts have been devoted to alleviating the formidable issues of nonuniform plating/stripping,corrosion,and hydrogen evolution related to zinc anode.Significant progress has been made in reversibility and cyclic stability of RAZBs.However,the problems have yet to be resolved well.In this review,strategies for zinc composition and structure optimization and anode–electrolyte interface construction are summarized.Perspectives for the further development of highperformance zinc anodes for RAZBs are outlined to guide future research and to accelerate their commercialization process.展开更多
Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,...Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.展开更多
Electron probe and X-ray energy spectrum were used to investigate the chemical composition of the interface between material and new bone after porous tricalcium phosphate ceramie implanted in tibia of rabbits. The el...Electron probe and X-ray energy spectrum were used to investigate the chemical composition of the interface between material and new bone after porous tricalcium phosphate ceramie implanted in tibia of rabbits. The element changes of the interface, the materials transformation and the situation of new bone formation at different implantation period were observed. The results showed that the carbon element content decreased gradually in new bone tissue, and the content of calcium and phosphor element increased by degrees with the implantation time. At the same time, calcium-phosphor ratio in the new bone kept a higher Ievel. New bone grew into the materials interior, material dispersed and degraded simultaneously. Both composition of materials and new bone tended to be consentient. Finally, the materials were substituted by new bone. After implantation, not only the materials itself dissolved and degraded partially, but also new bone formed on the outer and pore surface of β-TCP porous bioceramics, which shovved that the degradation products of lifeless calcium phosphate inorganic materials took part in constituting of new bone tissue.展开更多
A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an i...A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.展开更多
In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is us...In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is used to model web services,especially the control flow and possible interactions with other web services.A web service composition consists of a set of interacting WCFA.The global behavior of web service compositions is captured by NWA(nested word automata).A variation of the depth-first search algorithm is used to transform a set of WCFA into an NWA.State formulae and call stacks at each node of NWA are computed by a path-sensitive reachability analysis.Safety properties,call stack inspection properties and pre/post-conditions of service invocations are described by assertions.Then verification of these assertions is carried out by an automated SAT tool.展开更多
基金This work was supported by the Research Project of the Ministry of Education of China (Grant No. 02018) and the Research Foundation for Youth Teacher of Beijing University of Chemical Technology.
文摘In thermal barrier coatings (TBC), ceramics is covered on the metal matrix as coatings in order to raise its temperature endurance. Today most of the TBCs are of the double-layer-structure of Ni base heat-resistant alloy matrix+the bonding layer of MCrAIY alloy (M=Ni, Co, Ni+Co) +ZrO2. In this paper, the concept of interface conjunction factor (ICF) in the biphase interface of alloys is expanded to coatings. The ICFs of the interface between the ceramics and the bonding layers with various compositions, such as the electron density ρ, the electron density difference Δρ, and the number of atom state group which keeps the electron density continuous δ are calculated. From the calculation results, the following estimations can be deduced. When Al content is less than 6 wt% it improves the mechanical properties of the coatings; when the content is 6 wt%–12 wt% it will not worsen the properties; when the content is greater than 12 wt% it will have disadvantageous effect. The estimations accord well with the experiment results of the properties and the service time of the coatings. Therefore the concept of ICF has the same important meaning in coatings, and the valence electron structure of the interface can be a possible theoretical guide for the content optimization of TBCs.
基金support from the China Natural Science Foundation(grant nos.21935003 and 22278392)Strategic Priority Research Program of the CAS(grant no.XDA21070100)+4 种基金Energy Revolution S&T Program of Yulin Branch,Dalian National Laboratory For Clean Energy,CAS(grant no.DNLYLEC202201)CAS Strategic Leading Science&Technology Program(A)(grant no.XDA21070000)Dalian High Level Talent Innovation Support Program(grant no.2020RD05)Youth Innovation Promotion Association,CAS(grant no.2022184)DICP funding(grant no.DICPI202136).
文摘Rechargeable aqueous zinc-based batteries(RAZBs)are rapidly developing as very promising energy storage devices for both grid-scale and portable applications,thanks to their inherent safety,cost effectiveness,environmental friendliness,and competitive energy density.Increasing efforts have been devoted to alleviating the formidable issues of nonuniform plating/stripping,corrosion,and hydrogen evolution related to zinc anode.Significant progress has been made in reversibility and cyclic stability of RAZBs.However,the problems have yet to be resolved well.In this review,strategies for zinc composition and structure optimization and anode–electrolyte interface construction are summarized.Perspectives for the further development of highperformance zinc anodes for RAZBs are outlined to guide future research and to accelerate their commercialization process.
基金Project supported by the National Natural Science Foundation of China (Grant No.12104291)。
文摘Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.
基金This project was financially supported by the“973”Chinese National Key Fundamental ResearchDevelopment Progtam(G1999064701).
文摘Electron probe and X-ray energy spectrum were used to investigate the chemical composition of the interface between material and new bone after porous tricalcium phosphate ceramie implanted in tibia of rabbits. The element changes of the interface, the materials transformation and the situation of new bone formation at different implantation period were observed. The results showed that the carbon element content decreased gradually in new bone tissue, and the content of calcium and phosphor element increased by degrees with the implantation time. At the same time, calcium-phosphor ratio in the new bone kept a higher Ievel. New bone grew into the materials interior, material dispersed and degraded simultaneously. Both composition of materials and new bone tended to be consentient. Finally, the materials were substituted by new bone. After implantation, not only the materials itself dissolved and degraded partially, but also new bone formed on the outer and pore surface of β-TCP porous bioceramics, which shovved that the degradation products of lifeless calcium phosphate inorganic materials took part in constituting of new bone tissue.
文摘A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAH02A12)the National High Technology Research and Development Program of China(863 Program)(No.2006AA010101)
文摘In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is used to model web services,especially the control flow and possible interactions with other web services.A web service composition consists of a set of interacting WCFA.The global behavior of web service compositions is captured by NWA(nested word automata).A variation of the depth-first search algorithm is used to transform a set of WCFA into an NWA.State formulae and call stacks at each node of NWA are computed by a path-sensitive reachability analysis.Safety properties,call stack inspection properties and pre/post-conditions of service invocations are described by assertions.Then verification of these assertions is carried out by an automated SAT tool.