The main objective of this paper is to present the current status of the improvement technology for tropical cyclones alerting and warning in Thailand.In 2017,Thai Meteorological Department upgraded Weather Forecastin...The main objective of this paper is to present the current status of the improvement technology for tropical cyclones alerting and warning in Thailand.In 2017,Thai Meteorological Department upgraded Weather Forecasting system with Geogrid data for TMD domain with a High Performance Computer.The use of Himawari satellite data with receiving and analysis facilities provided by the Japan Government leads to timely monitoring of tropical storm events.The Typhoon Committee’s project on the network of weather radar plays supporting roles in storms’analysis and their impacts.Currently,TMD actively makes use of internet social-media,including Google Map and Facebook as an alternative to release information to the public.展开更多
Fifty-eight extratropical transition(ET) cases in the years 2000-2008, including 2,021 observations(at 6-hour intervals), over the western North Pacific are analyzed using the cyclone phase space(CPS) method, in an ef...Fifty-eight extratropical transition(ET) cases in the years 2000-2008, including 2,021 observations(at 6-hour intervals), over the western North Pacific are analyzed using the cyclone phase space(CPS) method, in an effort to get the characteristics of the structure evolution and environmental conditions of tropical cyclones(TCs) during ET over this area. Cluster analysis of the CPS dataset shows that strong TCs are more likely to undergo ET. ET begins with the increment of thermal asymmetry in TCs, along with the generation and intensification of an upper-level cold core, and ends with the occurrence of a lower-level cold core. ET lasts an average duration of about 28 hours. Dynamic composite analysis of the environmental field of different clusters shows that, in general, when TCs move northward,they are gradually embedded in the westerlies and gradually transform into extratropical cyclones under the influence of the mid-and higher-latitude baroclinic systems. As for those TCs which complete ET, there is always much greater potential vorticity gradient in the northwest of them and obvious water vapor transport channels in the environment.展开更多
Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the...Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better.展开更多
Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to s...Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to study the intensifying and weakening TCs during Extratropical Transition over China. The TCI shows strong upper-level divergence, strengthened low-level convergence and significantly enhanced upward motion under the influence of strong upper-level troughs and high-level jets. The TCI is correspondingly intensified after Extratropical Transition(ET); TCW exhibits strong upper-level divergence, subdued low-level convergence and slightly enhanced upward motion under the influence of weak upper-level troughs and high-level jets. It then weakens after ET. The increase(decrease) of the generation of kinetic energy by divergence wind in TCI(TCW) at low level is one of the major reasons for TCI's intensification(TCW's weakening) after transformation. The generation of kinetic energy by divergence wind is closely related to the development of a low-level baroclinic frontal zone. The growth of the generation of kinetic energy by rotational wind in TCI at upper level is favorable for TCI's maintenance, which is affected by strong upper-level troughs. The dissipation of the generation of kinetic energy by rotational wind in TCW at upper level is unfavorable for TCW's maintenance, which is affected by weak upper-level troughs.展开更多
文摘The main objective of this paper is to present the current status of the improvement technology for tropical cyclones alerting and warning in Thailand.In 2017,Thai Meteorological Department upgraded Weather Forecasting system with Geogrid data for TMD domain with a High Performance Computer.The use of Himawari satellite data with receiving and analysis facilities provided by the Japan Government leads to timely monitoring of tropical storm events.The Typhoon Committee’s project on the network of weather radar plays supporting roles in storms’analysis and their impacts.Currently,TMD actively makes use of internet social-media,including Google Map and Facebook as an alternative to release information to the public.
基金National Natural Science Foundation of China(40805018)National Basic Research Program of China(2013CB430104)Special Fund for Scientific Research in the Public Interest(GYHY201106035)
文摘Fifty-eight extratropical transition(ET) cases in the years 2000-2008, including 2,021 observations(at 6-hour intervals), over the western North Pacific are analyzed using the cyclone phase space(CPS) method, in an effort to get the characteristics of the structure evolution and environmental conditions of tropical cyclones(TCs) during ET over this area. Cluster analysis of the CPS dataset shows that strong TCs are more likely to undergo ET. ET begins with the increment of thermal asymmetry in TCs, along with the generation and intensification of an upper-level cold core, and ends with the occurrence of a lower-level cold core. ET lasts an average duration of about 28 hours. Dynamic composite analysis of the environmental field of different clusters shows that, in general, when TCs move northward,they are gradually embedded in the westerlies and gradually transform into extratropical cyclones under the influence of the mid-and higher-latitude baroclinic systems. As for those TCs which complete ET, there is always much greater potential vorticity gradient in the northwest of them and obvious water vapor transport channels in the environment.
基金National Natural Science Foundation of China(NSFC)(40875025,41175050,41475039 and41475041)Shanghai Natural Science Foundation of China(08ZR1422900)Public Sector(Meteorology)Research of China(GYHY201306012)
文摘Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better.
基金National Key Technology R&D Program(2012BAC22B03)NSFC General Program(41275094)
文摘Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to study the intensifying and weakening TCs during Extratropical Transition over China. The TCI shows strong upper-level divergence, strengthened low-level convergence and significantly enhanced upward motion under the influence of strong upper-level troughs and high-level jets. The TCI is correspondingly intensified after Extratropical Transition(ET); TCW exhibits strong upper-level divergence, subdued low-level convergence and slightly enhanced upward motion under the influence of weak upper-level troughs and high-level jets. It then weakens after ET. The increase(decrease) of the generation of kinetic energy by divergence wind in TCI(TCW) at low level is one of the major reasons for TCI's intensification(TCW's weakening) after transformation. The generation of kinetic energy by divergence wind is closely related to the development of a low-level baroclinic frontal zone. The growth of the generation of kinetic energy by rotational wind in TCI at upper level is favorable for TCI's maintenance, which is affected by strong upper-level troughs. The dissipation of the generation of kinetic energy by rotational wind in TCW at upper level is unfavorable for TCW's maintenance, which is affected by weak upper-level troughs.