为更好地认识盐蚀环境下沥青路面的性能损伤机理,在实验室内模拟除冰盐、融雪剂形成的盐蚀环境对沥青结合料的侵蚀作用。采用沥青四组分试验和原子力显微镜(atomic force microscopy,AFM)试验评价沥青的化学组分及表面微纳观形貌特性。...为更好地认识盐蚀环境下沥青路面的性能损伤机理,在实验室内模拟除冰盐、融雪剂形成的盐蚀环境对沥青结合料的侵蚀作用。采用沥青四组分试验和原子力显微镜(atomic force microscopy,AFM)试验评价沥青的化学组分及表面微纳观形貌特性。开展针入度、软化点、延度和黏度试验,探讨盐蚀环境下沥青结合料的性能演化情况。结果表明:在氯盐溶液中干湿循环和冻融循环处理后,沥青中的饱和分和芳香分含量减少,沥青质和胶质含量增加。沥青结合料表面粗糙度和蜂状结构面积百分比出现不同程度的下降。在盐蚀环境下,沥青结合料的针入度和延度均有不同程度的下降,软化点和黏度出现不同程度的升高。沥青结合料性能劣化的主要原因是在盐蚀环境中沥青的化学组分发生改变,出现一定程度的"盐老化现象"。展开更多
The hot deformation behavior of Fe-26Mn-6.2A1-0.05C steel was studied by experimental hot compression tests in the temperature range of 800-1050℃ and strain rate range of 0.01-30 s-1 on a Gleeble-3500 thermal simulat...The hot deformation behavior of Fe-26Mn-6.2A1-0.05C steel was studied by experimental hot compression tests in the temperature range of 800-1050℃ and strain rate range of 0.01-30 s-1 on a Gleeble-3500 thermal simulation machine.The microstructural evolution during the corresponding thermal process was observed in situ by confocal laser scanning microscopy.Electron backscattered diffraction and transmission electron microscopy analyses were carried out to observe the microstructural morphology before and after the hot deformation.Furthermore,interrupted compression tests were conducted to correlate the microstructural characteristics and softening mechanisms at different deformation stages.The results showed that hot compression tests of this steel were all carried out on a duplex matrix composed of austenite and fi-ferrite.As the deformation temperature increased from 800 to 1050℃,the volume fraction of austenite decreased from 70.9% to 44.0%,while that of 6-ferrite increased from 29.1% to 56.0%.Due to the different stress exponents(n)and apparent activation energies(Q),the generated strain was mostly accommodated by δ-ferrite at the commencement of deformation,and then both dynamic recovery and dynamic recrystallization occurred earlier in δ-ferrite than in austenite.This interaction of strain partitioning and unsynchronized softening behavior caused an abnormal hot deformation behavior profile in the Fe-Mn-A1 duplex steel,such as yield-like behavior,peculiar work-hardening behavior,and dynamic softening behavior,which are influenced by not only temperature and strain rate but also by microstructural evolution.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
To address the relatively mediocre mechanical properties of single-phase multi-component carbide ceramics,a phase transition from a single phase to multiple phases was proposed to achieve superior mechanical propertie...To address the relatively mediocre mechanical properties of single-phase multi-component carbide ceramics,a phase transition from a single phase to multiple phases was proposed to achieve superior mechanical properties.A series of(TiZrV_(x)Nb)C_(0.8) ceramics with different V contents were fabricated by spark plasma sintering(SPS).The influence of the V content on the phase composition,microstructural evolution,and mechanical properties was investigated in detail.The transition behavior from a single phase to multiple phases is discovered and discussed.The formation of the Zr-rich phase and Zr-poor phase can be attributed to the increase in lattice distortion and mixed enthalpy caused by the addition of V.A nanometer lamellar structure with a semi-coherent interface obtained via in situ decomposition is reported for the first time in multi-component carbide ceramics.The semi-coherent interfaces with high dislocation density and strain concentration effectively improve the mechanical properties,grain refinement,and multi-phase formation.The optimal comprehensive mechanical properties of the Vickers hardness(26.3 GPa),flexural strength(369 MPa),and fracture toughness(3.1 MPa·m^(1/2))were achieved for the sample with 20 mol%V.展开更多
Hybrid metal-organic framework(MOF)derivatives play a significant role in the novel catalyst development in energy conversion reactions.Here,we demonstrated the low-temperature fully fluorinated zeolitic imidazole fra...Hybrid metal-organic framework(MOF)derivatives play a significant role in the novel catalyst development in energy conversion reactions.Here,we demonstrated the low-temperature fully fluorinated zeolitic imidazole framework(ZIF)coupled with a three-dimensional open framework Prussian blue analog(PBA)with combined advantages for electrocatalytic oxygen evolution reaction(OER)in water splitting reaction.The spectroscopic analysis and the electrochemical studies revealed the combined advantages of efficient electronic effect and active site synergism.Because of good conductivity improvement by Ndoped carbon derived from ZIF and the high electrochemical surface area and active site exposure from PBA derivatives,good catalytic performance was obtained on the optimal catalyst of Co Ni ZIF/Co Fe-PBAF-300,which required a low overpotential of 250 m V to reach 10 m A/cm^(2)loaded on the glassy carbon electrode,with Tafel slope of 47.4 m V/dec,and very high dynamic and steady stability.In addition,the multi-component with the mixed structure from highly polar metal fluorides promoted the easy formation of the active phase as revealed by the post-sample analysis.The current results showed a novel composite catalyst materials development from the hybrid MOF derivatives,which would be promising in the electrolysis of water oxidation reactions and energy-relevant catalysis reactions.展开更多
Research on ad-hoc network connectivity has mainly focused on asymptotic results in the number of nodes in the network. For a one-dimensional ad-hoc network G1, assuming all the nodes are independently uniform distrib...Research on ad-hoc network connectivity has mainly focused on asymptotic results in the number of nodes in the network. For a one-dimensional ad-hoc network G1, assuming all the nodes are independently uniform distributed in a closed interval [0, Z](z ∈ R^+), we derive a generic formula for the probability that the network is connected. The finite connected ad-hoc networks is analyzed. And we separately suggest necessary conditions to make the ad-hoc network to be connected in one and two dimensional cases, facing possible failed nodes (f-nodes). Based on the necessary condition and unit-disk assumption for the node transmission, we prove that the nodes of the connected two-dimensional ad-hoc networks (G2) can be divided into at most five different groups. For an f-node no in either of the five groups, we derive a close formula for the probability that there is at least one route between a pair of nodes in G2 -- {no}.展开更多
文摘为更好地认识盐蚀环境下沥青路面的性能损伤机理,在实验室内模拟除冰盐、融雪剂形成的盐蚀环境对沥青结合料的侵蚀作用。采用沥青四组分试验和原子力显微镜(atomic force microscopy,AFM)试验评价沥青的化学组分及表面微纳观形貌特性。开展针入度、软化点、延度和黏度试验,探讨盐蚀环境下沥青结合料的性能演化情况。结果表明:在氯盐溶液中干湿循环和冻融循环处理后,沥青中的饱和分和芳香分含量减少,沥青质和胶质含量增加。沥青结合料表面粗糙度和蜂状结构面积百分比出现不同程度的下降。在盐蚀环境下,沥青结合料的针入度和延度均有不同程度的下降,软化点和黏度出现不同程度的升高。沥青结合料性能劣化的主要原因是在盐蚀环境中沥青的化学组分发生改变,出现一定程度的"盐老化现象"。
基金financially supported by the National Natural Science Foundation of China(No.51474031)
文摘The hot deformation behavior of Fe-26Mn-6.2A1-0.05C steel was studied by experimental hot compression tests in the temperature range of 800-1050℃ and strain rate range of 0.01-30 s-1 on a Gleeble-3500 thermal simulation machine.The microstructural evolution during the corresponding thermal process was observed in situ by confocal laser scanning microscopy.Electron backscattered diffraction and transmission electron microscopy analyses were carried out to observe the microstructural morphology before and after the hot deformation.Furthermore,interrupted compression tests were conducted to correlate the microstructural characteristics and softening mechanisms at different deformation stages.The results showed that hot compression tests of this steel were all carried out on a duplex matrix composed of austenite and fi-ferrite.As the deformation temperature increased from 800 to 1050℃,the volume fraction of austenite decreased from 70.9% to 44.0%,while that of 6-ferrite increased from 29.1% to 56.0%.Due to the different stress exponents(n)and apparent activation energies(Q),the generated strain was mostly accommodated by δ-ferrite at the commencement of deformation,and then both dynamic recovery and dynamic recrystallization occurred earlier in δ-ferrite than in austenite.This interaction of strain partitioning and unsynchronized softening behavior caused an abnormal hot deformation behavior profile in the Fe-Mn-A1 duplex steel,such as yield-like behavior,peculiar work-hardening behavior,and dynamic softening behavior,which are influenced by not only temperature and strain rate but also by microstructural evolution.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
基金the National Natural Science Foundation of China (Nos. 52032002, 52372060, 51972081, and U22A20128)the National Safety Academic Foundation (No. U2130103)+4 种基金the National Key R&D Program of China (No. 2021YFB3701400)the China Postdoctoral Science Foundation (No. 2023M730839)the Heilongjiang Postdoctoral Fund (No. LBH-Z22025)the National Key Laboratory of Precision Hot Processing of Metals (No. 61429092300305)the Heilongjiang Touyan Team Program are gratefully acknowledged. The authors thank Professor Suk-Joong L. Kang (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea) for his assistance in editing. The support of the thermodynamic calculations with FactSage software provided by Professor Yudong Fu (College of Material Science and Chemical Engineering, Harbin Engineering University, China) is also acknowledged.
文摘To address the relatively mediocre mechanical properties of single-phase multi-component carbide ceramics,a phase transition from a single phase to multiple phases was proposed to achieve superior mechanical properties.A series of(TiZrV_(x)Nb)C_(0.8) ceramics with different V contents were fabricated by spark plasma sintering(SPS).The influence of the V content on the phase composition,microstructural evolution,and mechanical properties was investigated in detail.The transition behavior from a single phase to multiple phases is discovered and discussed.The formation of the Zr-rich phase and Zr-poor phase can be attributed to the increase in lattice distortion and mixed enthalpy caused by the addition of V.A nanometer lamellar structure with a semi-coherent interface obtained via in situ decomposition is reported for the first time in multi-component carbide ceramics.The semi-coherent interfaces with high dislocation density and strain concentration effectively improve the mechanical properties,grain refinement,and multi-phase formation.The optimal comprehensive mechanical properties of the Vickers hardness(26.3 GPa),flexural strength(369 MPa),and fracture toughness(3.1 MPa·m^(1/2))were achieved for the sample with 20 mol%V.
基金the finical support of the National Natural Science Foundation of China(Nos.21972124,22272148)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘Hybrid metal-organic framework(MOF)derivatives play a significant role in the novel catalyst development in energy conversion reactions.Here,we demonstrated the low-temperature fully fluorinated zeolitic imidazole framework(ZIF)coupled with a three-dimensional open framework Prussian blue analog(PBA)with combined advantages for electrocatalytic oxygen evolution reaction(OER)in water splitting reaction.The spectroscopic analysis and the electrochemical studies revealed the combined advantages of efficient electronic effect and active site synergism.Because of good conductivity improvement by Ndoped carbon derived from ZIF and the high electrochemical surface area and active site exposure from PBA derivatives,good catalytic performance was obtained on the optimal catalyst of Co Ni ZIF/Co Fe-PBAF-300,which required a low overpotential of 250 m V to reach 10 m A/cm^(2)loaded on the glassy carbon electrode,with Tafel slope of 47.4 m V/dec,and very high dynamic and steady stability.In addition,the multi-component with the mixed structure from highly polar metal fluorides promoted the easy formation of the active phase as revealed by the post-sample analysis.The current results showed a novel composite catalyst materials development from the hybrid MOF derivatives,which would be promising in the electrolysis of water oxidation reactions and energy-relevant catalysis reactions.
基金the National Natural Science Foundation of China (Grant No. 60572066)Key Scientific Research Project of Shanghai Municipal Education Commission (Grant No. 06ZZ84)CityU, Hong Kong, Applied R & D Funding (ARD) (Grant No. 9668009)
文摘Research on ad-hoc network connectivity has mainly focused on asymptotic results in the number of nodes in the network. For a one-dimensional ad-hoc network G1, assuming all the nodes are independently uniform distributed in a closed interval [0, Z](z ∈ R^+), we derive a generic formula for the probability that the network is connected. The finite connected ad-hoc networks is analyzed. And we separately suggest necessary conditions to make the ad-hoc network to be connected in one and two dimensional cases, facing possible failed nodes (f-nodes). Based on the necessary condition and unit-disk assumption for the node transmission, we prove that the nodes of the connected two-dimensional ad-hoc networks (G2) can be divided into at most five different groups. For an f-node no in either of the five groups, we derive a close formula for the probability that there is at least one route between a pair of nodes in G2 -- {no}.