The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of ...The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of both theoretical and practical signif- icance. Although various approaches have been proposed to estimate network topologies, many are not well established to the noisy nature of network dynamics and ubiquity of transmission delay among network individuals. This paper focuses on to- pology inference of uncertain complex dynamical networks. An auxiliary network is constructed and an adaptive scheme is proposed to track topological parameters. It is noteworthy that the considered network model is supposed to contain practical stochastic perturbations, and noisy observations are taken as control inputs of the constructed auxiliary network. In particular, the control technique can be further employed to locate hidden sources (or latent variables) in networks. Numerical examples are provided to illustrate the effectiveness of the proposed scheme. In addition, the impact of coupling strength and coupling delay on identification performance is assessed. The proposed scheme provides engineers with a convenient approach to infer topologies of general complex dynamical networks and locate hidden sources, and the detailed performance evaluation can further facilitate practical circuit design.展开更多
By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator ...By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.展开更多
A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking var...A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.展开更多
A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order ...A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.展开更多
基金supported by the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant Nos.61573262,61532020&11472290)the Fundamental Research Funds for the Central Universities(Grant No.2014201020206)
文摘The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of both theoretical and practical signif- icance. Although various approaches have been proposed to estimate network topologies, many are not well established to the noisy nature of network dynamics and ubiquity of transmission delay among network individuals. This paper focuses on to- pology inference of uncertain complex dynamical networks. An auxiliary network is constructed and an adaptive scheme is proposed to track topological parameters. It is noteworthy that the considered network model is supposed to contain practical stochastic perturbations, and noisy observations are taken as control inputs of the constructed auxiliary network. In particular, the control technique can be further employed to locate hidden sources (or latent variables) in networks. Numerical examples are provided to illustrate the effectiveness of the proposed scheme. In addition, the impact of coupling strength and coupling delay on identification performance is assessed. The proposed scheme provides engineers with a convenient approach to infer topologies of general complex dynamical networks and locate hidden sources, and the detailed performance evaluation can further facilitate practical circuit design.
基金Supported by the Doctoral Fbundation of the State Education Commission of China
文摘By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.
文摘A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.
文摘A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.