针对传统算法依赖于对红外目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰因素下的检测需求。论文提出一种基于改进YOLOv5(You Only Look Once)的复杂背景红外弱小目标检测算法。该算法在YOLOv5基础上,添加注意力机...针对传统算法依赖于对红外目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰因素下的检测需求。论文提出一种基于改进YOLOv5(You Only Look Once)的复杂背景红外弱小目标检测算法。该算法在YOLOv5基础上,添加注意力机制提高算法的特征提取能力和检测效率,同时改进原YOLOv5目标检测网络的损失函数和预测框的筛选方式提高算法对红外弱小目标检测的准确率。实验选取了来自不同复杂背景的7组红外弱小目标数据集,将这些图像数据集进行标注并训练,得到红外弱小目标检测模型,然后从模型训练结果和目标检测结果的角度评估算法和模型的正确性。实验结果表明:改进的YOLOv5算法训练出来的模型,检测准确性和检测速度对比实验列出的几种目标检测算法均有明显的提升,平均精度均值(mean Average Precision,m AP)可达99.6%以上,在不同复杂背景下均可有效检测出红外弱小目标,且漏警率、虚警率低。展开更多
Protolith ages and Indosinian deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone are important, unsolved problems. Our LA-ICP-MS zircon dating work indicates that pro...Protolith ages and Indosinian deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone are important, unsolved problems. Our LA-ICP-MS zircon dating work indicates that protolith ages of the greenschist-facies Zhangbaling Group are 754–753 Ma, and those of the amphibolite-facies Feidong Complex are 800–745 Ma. These rocks belong to the earliest cover of the Yangtze Plate. Their ages and metamorphic features suggest that the rocks did not come from the Dabie Orogen. The Indosinian structures in the Zhangbaling Group and lower Sinian strata formed in a flatlying ductile detachment zone with a shear sense of top-to-the-SSW whereas those in the underlying Feidong Complex are characterized by ENE-WSW inclined folds developed under a ductile regime. It is suggested therefore that the sinistral Tan-Lu Fault Zone of the Indosinian period is buried under the Hefei Basin west of the Zhangbaling uplift segment and the uplift segment is a displaced block neighboring the fault zone. Detachment deformation between the upper rigid and lower ductile crust during displacement of the Zhangbaling uplift segment resulted in the formation of the flat-lying ductile detachment zone and its underlying drag fold zone of a ductile regime. The protolith ages and deformation mechanism in the Zhangbaling uplift segment further prove sinistral origination of the Tan-Lu Fault Zone during the continent-continent collision of the North China and Yangtze plates and support the indentation model for the two-plate collision that considers the Tan-Lu Fault Zone as an oblique convergence boundary.展开更多
文摘针对传统算法依赖于对红外目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰因素下的检测需求。论文提出一种基于改进YOLOv5(You Only Look Once)的复杂背景红外弱小目标检测算法。该算法在YOLOv5基础上,添加注意力机制提高算法的特征提取能力和检测效率,同时改进原YOLOv5目标检测网络的损失函数和预测框的筛选方式提高算法对红外弱小目标检测的准确率。实验选取了来自不同复杂背景的7组红外弱小目标数据集,将这些图像数据集进行标注并训练,得到红外弱小目标检测模型,然后从模型训练结果和目标检测结果的角度评估算法和模型的正确性。实验结果表明:改进的YOLOv5算法训练出来的模型,检测准确性和检测速度对比实验列出的几种目标检测算法均有明显的提升,平均精度均值(mean Average Precision,m AP)可达99.6%以上,在不同复杂背景下均可有效检测出红外弱小目标,且漏警率、虚警率低。
基金supported by the National Natural Science Foundation of China(Grant Nos.41072162,91214301)
文摘Protolith ages and Indosinian deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone are important, unsolved problems. Our LA-ICP-MS zircon dating work indicates that protolith ages of the greenschist-facies Zhangbaling Group are 754–753 Ma, and those of the amphibolite-facies Feidong Complex are 800–745 Ma. These rocks belong to the earliest cover of the Yangtze Plate. Their ages and metamorphic features suggest that the rocks did not come from the Dabie Orogen. The Indosinian structures in the Zhangbaling Group and lower Sinian strata formed in a flatlying ductile detachment zone with a shear sense of top-to-the-SSW whereas those in the underlying Feidong Complex are characterized by ENE-WSW inclined folds developed under a ductile regime. It is suggested therefore that the sinistral Tan-Lu Fault Zone of the Indosinian period is buried under the Hefei Basin west of the Zhangbaling uplift segment and the uplift segment is a displaced block neighboring the fault zone. Detachment deformation between the upper rigid and lower ductile crust during displacement of the Zhangbaling uplift segment resulted in the formation of the flat-lying ductile detachment zone and its underlying drag fold zone of a ductile regime. The protolith ages and deformation mechanism in the Zhangbaling uplift segment further prove sinistral origination of the Tan-Lu Fault Zone during the continent-continent collision of the North China and Yangtze plates and support the indentation model for the two-plate collision that considers the Tan-Lu Fault Zone as an oblique convergence boundary.