期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复数二维经验模态分解在SAR目标识别中的应用 被引量:2
1
作者 刘志超 屈百达 《红外与激光工程》 EI CSCD 北大核心 2021年第5期237-244,共8页
提出基于复数二维经验模态分解(C-BEMD)的合成孔径雷达(SAR)图像目标识别。C-BEMD作为传统BEMD的复数域推广,能直接处理原始SAR图像(包含幅度和相位信息)。采用C-BEMD对原始SAR图像进行分解,获得多层次复数内蕴模函数(BIMF),反映目标时... 提出基于复数二维经验模态分解(C-BEMD)的合成孔径雷达(SAR)图像目标识别。C-BEMD作为传统BEMD的复数域推广,能直接处理原始SAR图像(包含幅度和相位信息)。采用C-BEMD对原始SAR图像进行分解,获得多层次复数内蕴模函数(BIMF),反映目标时频二维特性。各层次BIMF既有独立描述能力,反映目标不同类型的特征;同时也具有内在关联性,即反映同一目标的固有属性。为此,分类算法基于联合稀疏表示设计,可利用内在关联性约束提高各层次BIMF的表征精度。利用MSTAR数据集中的多类目标SAR图像对方法进行测试验证,结果反映其在标准操作条件(SOC)和扩展操作条件(EOC)均可保持可靠的识别性能。 展开更多
关键词 合成孔径雷达 目标识别 复数二维经验模态分解 联合稀疏表示
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部