Let S be an ideal nil-extension of a completely regular semigroup K by a nil semigroup Q with zero. A concept of admissible congruence pairs (δ,ω) of S is introduced, where δ and ω are a congruence on Q and a cong...Let S be an ideal nil-extension of a completely regular semigroup K by a nil semigroup Q with zero. A concept of admissible congruence pairs (δ,ω) of S is introduced, where δ and ω are a congruence on Q and a congruence on K respectively. It is proved that every congruence on S can be uniquely respresented by an admissible congruence pair (δ,ω) of S. Suppose that ρ K denotes the Rees congruence induced by the ideal K of S. Then it is shown that for any congruence σ on S,a mapping Γ:σ|→(σ Q,σ K) is an order-preserving bijection from the set of all congruences on S onto the set of all admissible congruence pairs of S,where σ K is the restriction of σ to K and σ Q=(σ∨ρ K)/ρ K. Moreover,the lattice of congruences of S is also discussed. As a special case,every congruence on completely Archimedean semigroups S is described by an admissible quarterple of S. The following question is asked: Is the lattice of congruences of the completely Archimedean semigroup a semimodular lattice?展开更多
Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various stru...Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.展开更多
文摘Let S be an ideal nil-extension of a completely regular semigroup K by a nil semigroup Q with zero. A concept of admissible congruence pairs (δ,ω) of S is introduced, where δ and ω are a congruence on Q and a congruence on K respectively. It is proved that every congruence on S can be uniquely respresented by an admissible congruence pair (δ,ω) of S. Suppose that ρ K denotes the Rees congruence induced by the ideal K of S. Then it is shown that for any congruence σ on S,a mapping Γ:σ|→(σ Q,σ K) is an order-preserving bijection from the set of all congruences on S onto the set of all admissible congruence pairs of S,where σ K is the restriction of σ to K and σ Q=(σ∨ρ K)/ρ K. Moreover,the lattice of congruences of S is also discussed. As a special case,every congruence on completely Archimedean semigroups S is described by an admissible quarterple of S. The following question is asked: Is the lattice of congruences of the completely Archimedean semigroup a semimodular lattice?
基金Guo Yuqi was supported by the National Natural Science Foundation of China (Grant No. 10071068) the Provincial Applied Fundamental Research Foundation of Yunnan Province of China.
文摘Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.